Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T21:00:17.920Z Has data issue: false hasContentIssue false

New insights into the biology of filarial infections

Published online by Cambridge University Press:  01 June 2009

S. Specht*
Affiliation:
Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Sigmund Freud Strasse 25, 53105Bonn, Germany
S. Wanji
Affiliation:
Research Foundation for Tropical Diseases and Environment, PO Box 474, Buea, Cameroon
*

Abstract

Recent successes in the control of lymphatic filariasis and onchocerciasis need continuing research in order to sustain the achievements and to develop further tools to tackle the new questions that arise when only reduced infection prevalences prevail. In this regard, in a symposium held at the Xth European Multicolloquium of Parasitology (August 2008, Paris) questions such as the impact of filarial immunosuppression, and its lack following filarial control, on the outcome of co-infections were addressed, as were new approaches to treatment with promising drugs such as moxidectin or the antibiotic chemotherapy against Wolbachia endosymbionts in filariae. In particular, longer treatment courses of doxycycline could be carried out by community-directed treatment at high coverage, thus potentially allowing its use in restricted areas with suboptimal responses to ivermectin against onchocerciasis, or in areas with co-infection by loiasis where onchocerciasis or lymphatic filariasis need to be controlled. New, more potent drugs, or eventually vaccines, will be of importance because in many vector–filarial parasite relationships worldwide, transmission efficacy increases with low numbers of ingested microfilariae, and since ivermectin may render treated hosts more susceptible to new infection.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ardelli, B.F. & Prichard, R.K. (2004) Identification of variant ABC-transporter genes among Onchocerca volvulus collected from ivermectin-treated and untreated patients in Ghana, West Africa. Annals of Tropical Medicine and Parasitology 98, 371384.CrossRefGoogle ScholarPubMed
Awadzi, K., Attah, S.K., Addy, E.T., Opoku, N.O., Quartey, B.T., Lazdins-Helds, J.K., Ahmed, K., Boatin, B.A., Boakye, D.A. & Edwards, G. (2004) Thirty-month follow-up of sub-optimal responders to multiple treatments with ivermectin, in two onchocerciasis-endemic foci in Ghana. Annals of Tropical Medicine and Parasitology 98, 359370.CrossRefGoogle ScholarPubMed
Bain, O. (1971) Transmission of filariasis. Limitation of passages of ingested microfilariae to the hemocoele of the vector; interpretation. Annales de Parasitologie Humaine et Comparee 46, 613631(in French).CrossRefGoogle Scholar
Bandi, C., McCall, J.W., Genchi, C., Corona, S., Venco, L. & Sacchi, L. (1999) Effects of tetracycline on the filarial worms Brugia pahangi and Dirofilaria immitis and their bacterial endosymbionts Wolbachia. International Journal of Parasitology 29, 357364.CrossRefGoogle ScholarPubMed
Basanez, M.G., Pion, S.D., Churcher, T.S., Breitling, L.P., Little, M.P. & Boussinesq, M. (2006) River blindness: a success story under threat? PLoS Medicine 3, e371.CrossRefGoogle Scholar
Basanez, M.G., Pion, S.D., Boakes, E., Filipe, J.A., Churcher, T.S. & Boussinesq, M. (2008) Effect of single-dose ivermectin on Onchocerca volvulus: a systematic review and meta-analysis. Lancet Infectious Diseases 8, 310322.CrossRefGoogle ScholarPubMed
Borsboom, G.J., Boatin, B.A., Nagelkerke, N.J., Agoua, H., Akpoboua, K.L., Alley, E.W., Bissan, Y., Renz, A., Yameogo, L., Remme, J.H. & Habbema, J.D. (2003) Impact of ivermectin on onchocerciasis transmission: assessing the empirical evidence that repeated ivermectin mass treatments may lead to elimination/eradication in West Africa. Filaria Journal 2, 8.CrossRefGoogle ScholarPubMed
Bourguinat, C., Pion, S.D., Kamgno, J., Gardon, J., Duke, B.O., Boussinesq, M. & Prichard, R.K. (2007) Genetic selection of low fertile Onchocerca volvulus by ivermectin treatment. PLoS Neglected Tropical Diseases 1, e72.CrossRefGoogle ScholarPubMed
Boussinesq, M. (2008) Onchocerciasis control: biological research is still needed. Parasite 15, 510514.CrossRefGoogle Scholar
Boussinesq, M., Gardon, J., Gardon-Wendel, N., Kamgno, J., Ngoumou, P. & Chippaux, J.P. (1998) Three probable cases of Loa loa encephalopathy following ivermectin treatment for onchocerciasis. American Journal of Tropical Medicine and Hygiene 58, 461469.CrossRefGoogle ScholarPubMed
Churcher, T.S. & Basanez, M.G. (2008) Density dependence and the spread of anthelmintic resistance. Evolution 62, 528537.CrossRefGoogle ScholarPubMed
Fernandez Ruiz, D., Dubben, B., Saeftel, M., Endl, E., Deininger, S., Hoerauf, A. & Specht, S. (2008) Filarial infection induces protection against P. berghei liver stages in mice. Microbes and Infection 11, 172180.CrossRefGoogle Scholar
Gardon, J., Gardon-Wendel, N., Demanga, N., Kamgno, J., Chippaux, J.P. & Boussinesq, M. (1997) Serious reactions after mass treatment of onchocerciasis with ivermectin in an area endemic for Loa loa infection. Lancet 350, 1822.CrossRefGoogle Scholar
Hoerauf, A. (2008) Filariasis: new drugs and new opportunities for lymphatic filariasis and onchocerciasis. Current Opinion in Infectious Diseases 21, 673681.CrossRefGoogle Scholar
Hoerauf, A., Nissen-Pähle, K., Schmetz, C., Henkle-Dührsen, K., Blaxter, M.L., Büttner, D.W., Gallin, M.Y., Al-Qaoud, K.M., Lucius, R. & Fleischer, B. (1999) Tetracycline therapy targets intracellular bacteria in the filarial nematode Litomosoides sigmodontis and results in filarial infertility. Journal of Clinical Investigation 103, 1118.CrossRefGoogle ScholarPubMed
Hoerauf, A., Volkmann, L., Hamelmann, C., Adjei, O., Autenrieth, I.B., Fleischer, B. & Buttner, D.W. (2000a) Endosymbiotic bacteria in worms as targets for a novel chemotherapy in filariasis. Lancet 355, 12421243.CrossRefGoogle ScholarPubMed
Hoerauf, A., Volkmann, L., Paehle, K., Schmetz, C., Autenrieth, I., Büttner, D.W. & Fleischer, B. (2000b) Targeting of Wolbachia in Litomosoides sigmodontis: comparison of tetracycline with chloramphenicol, macrolides and ciprofloxacin. Tropical Medicine and International Health 5, 275279.CrossRefGoogle ScholarPubMed
Hoerauf, A., Specht, S., Buttner, M., Pfarr, K., Mand, S., Fimmers, R., Marfo-Debrekyei, Y., Konadu, P., Debrah, A.Y., Bandi, C., Brattig, N., Albers, A., Larbi, J., Batsa, L., Taylor, M.J., Adjei, O. & Buttner, D.W. (2008) Wolbachia endobacteria depletion by doxycycline as antifilarial therapy has macrofilaricidal activity in onchocerciasis: a randomized placebo-controlled study. Medical Microbiology and Immunology 197, 295311.CrossRefGoogle ScholarPubMed
Homeida, M., Braide, E., Elhassan, E., Amazigo, U.V., Liese, B., Benton, B., Noma, M., Etya'ale, D., Dadzie, K.Y., Kale, O.O. & Seketeli, A. (2002) APOC's strategy of community-directed treatment with ivermectin (CDTI) and its potential for providing additional health services to the poorest populations. African Programme for Onchocerciasis Control. Annals of Tropical Medicine and Parasitology 96 (Suppl. 1), S93S104.CrossRefGoogle Scholar
Langworthy, S., Renz, A., Mackenstedt, U., Henkle-Dührsen, K., Bronsvoort, M., Tanya, V., Donnelly, M. & Trees, A. (2000) Macrofilaricidal activity of tetracycline against the filarial nematode, Onchocerca ochengi: elimination of Wolbachia preceeds worm death and suggests a dependent relationship. Proceedings of the Royal Society of London Series B 267, 10631069.CrossRefGoogle Scholar
Mackenzie, C., Geary, T., Prichard, R. & Boussinesq, M. (2007) Where next with Loa loa encephalopathy? Data are badly needed. Trends in Parasitology 23, 237238.CrossRefGoogle Scholar
Njongmeta, L.M., Nfon, C.K., Gilbert, J., Makepeace, B.L., Tanya, V.N. & Trees, A.J. (2004) Cattle protected from onchocerciasis by ivermectin are highly susceptible to infection after drug withdrawal. International Journal of Parasitology 34, 10691074.CrossRefGoogle ScholarPubMed
Osei-Atweneboana, M.Y., Eng, J.K., Boakye, D.A., Gyapong, J.O. & Prichard, R.K. (2007) Prevalence and intensity of Onchocerca volvulus infection and efficacy of ivermectin in endemic communities in Ghana: a two-phase epidemiological study. Lancet 369, 20212029.CrossRefGoogle Scholar
Remme, J.H., Feenestra, P., Lever, P.R., Medici, A.C., Morel, C.M., Noma, M., Ramaiah, K.D., Richards, F., Seketeli, A., Schmunis, G., Van Brakel, W.H. & Vassall, A. (2006) Tropical diseases targeted for elimination: chagas disease, lymphatic filariasis, onchocerciasis. In Disease control priorities in developing countries. 2nd edn.Washington, DC, IBRD/World Bank and Oxford, Oxford University Press Available athttp://ncbi.nlm.nih.gov/books/bookres.fcgi/dcp2/ch22.pdf.Google Scholar
Townson, S., Hutton, D., Siemienska, J., Hollick, L., Scanlon, T., Tagboto, S.K. & Taylor, M.J. (2000) Antibiotics and Wolbachia in filarial nematodes: antifilarial activity of rifampicin, oxytetracycline and chloramphenicol against Onchocerca gutturosa, Onchocerca lienalis and Brugia pahangi. Annals of Tropical Medicine and Parasitology 94, 801816.CrossRefGoogle ScholarPubMed
Trees, A.J., Graham, S.P., Renz, A., Bianco, A.E. & Tanya, V. (2000) Onchocerca ochengi infections in cattle as a model for human onchocerciasis: recent developments. Parasitology 120 (Suppl.), S133S142.CrossRefGoogle Scholar
WHO (2007) Meeting of the international task force for disease eradication. Weekly Epidemiological Record 82, 197208.Google Scholar