Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T12:45:57.144Z Has data issue: false hasContentIssue false

In vitro effects of mebendazole on the carbohydrate metabolism of Avitellina lahorea (Cestoda)

Published online by Cambridge University Press:  05 June 2009

M. Ahmad
Affiliation:
Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh–202 001, India
W. A. Nizami*
Affiliation:
Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh–202 001, India
*
* To whom all correspondence should be addressed.

Abstract

Mebendazole (3.3 μmol), causes in vitro glycogen depletion and inhibits glucose uptake in Avitellina lahorea. Inhibition of non-specific phosphomonoesterases and adenosine triphosphatase by mebendazole is discussed in the light of the role of phosphatases in uptake mechanisms. Mebendazole has no effect on hexokinase which has broad substrate specificity but influences the activities of some glycolytic enzymes such as phosphorylase, phosphoglucomutase and glucose-6-phosphatase. Thus, it appears that mebendazole also acts to disrupt certain enzymes of carbohydrate metabolism which may ultimately cause death of the parasite.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahmad, M. & Nizami, W. A. (1983) Dimethyl sulfoxide—a safe drug solvent for in vitro screening against parasites. Annals of the New York Academy of Sciences, 411, 347351.CrossRefGoogle Scholar
Ahmad, M., Siddiqui, A. A. & Nizami, W. A. (1984) Changes in the level of phosphatases of Ascaridia galli and Cotugnia digonopora following the in vitro action of mebendazole. Indian Journal of Parasitology, 8, 151153.Google Scholar
Baginski, E. S., Foa, P. P. & Zak, B. (1974) Methods for determination of enzymes activities. In: Methods of Enzymatic Analysis (editor, Bergmeyer, H. U.), 2nd Edn., Vol. II, pp. 876880. Academic Press: New York.CrossRefGoogle Scholar
Bergmeyer, H. U., Gawehn, K. & Grassl, M. (1974) Enzymes as biochemical reagents. In: Methods of Enzymatic Analysis (editor, Bergmeyer, H. U), 2nd Edn., Vol. I, pp. 425–422. Academic Press: New York.Google Scholar
Borgers, M., De Nollin, S., Verheyen, A., Vanparijs, O. & Thienpont, D. (1975a) Morphological changes in cysticerci of Taenia taeniaeformis after mebendazole treatment. Journal of Parasitology, 61, 830843.CrossRefGoogle ScholarPubMed
Borgers, M., De Nollin, S., De Brabander, M. & Thienpont, D. (1975b) Influence of the anthelmintic mebendazole on microtubules and intracellular organelle movement in nematode intestinal cells. American Journal of Veterinary Research, 36, 11531166.Google ScholarPubMed
Cavier, R. & Savel, J. (1952) La synthese de glycogene a partir de quelques glucides et de certains de leurs derives par l'Ascaris du porc. Ascaris lumbricoides (Linne, 1758). Comptes Rendus des Seances de la Societé de Biologie et de ses Filiales, 234, 25622564.Google Scholar
Crane, R. K. & Sols, A. (1953) The association of hexokinase with particulate fractions of brain and other tissue homogenates. Journal of Biological Chemistry, 203, 273292.CrossRefGoogle ScholarPubMed
De Nollin, S. & Van Den Bossche, H. (1973) Biochemical effects of mebendazole on Trichinella spiralis larvae. Journal of Parasitology, 59, 970976.CrossRefGoogle ScholarPubMed
Kielley, W. W. (1972) Mg-Activated muscle ATPases. In: Methods in Enzymology (editors Collowick, S. P. and Kaplan, N. O.). Vol. II, pp. 588591. Academic Press: New York.Google Scholar
Komuniecki, R. W. & Roberts, L. R. (1977) Hexokinases from the rat tapeworm, Hymenolepis diminuta. Comparative Biochemistry and Physiology, 57B, 4549.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951) Protein measurement with folin phenol reagent. Journal of Biological Chemistry, 193, 266275.CrossRefGoogle ScholarPubMed
Lumsden, R. D. (1975) Parasitological Review: Surface ultrastructure and cytochemistry of parasitic helminths. Experimental Parasitology, 37, 267339.CrossRefGoogle Scholar
Marinetti, G. V. (1962) Chromatographic separation, identification and analysis of phosphatides. Journal of Lipid Research, 3, 120.CrossRefGoogle Scholar
Najjar, V. A. (1948) The isolation and properties of phosphoglucomutase. Journal of Biological Chemistry, 175, 281290.CrossRefGoogle ScholarPubMed
Nechay, B. R. (1977) Biochemical basis of diuretic action. Journal of Clinical Pharmacology, 17, 626641.Google ScholarPubMed
Nechay, B. R., Hillman, G. R. & Dotson, M. J. (1980) Properties and drug sensitivity of adenosine triphosphatases from Schistosoma mansoni. Journal of Parasitology, 66, 596600.CrossRefGoogle ScholarPubMed
Raabo, E. & Terkildsen, T. C. (1960) On the enzymatic determination of blood glucose. Scandinavian Journal of Clinical Laboratory Investigation, 12, 402.CrossRefGoogle ScholarPubMed
Roe, J. H. & Dailey, R. E. (1966) Determination of glycogen with the anthrone reagent. Analytical Biochemistry, 15, 245250.CrossRefGoogle ScholarPubMed
Roy, T. K. (1979) Histochemical studies on Raillietina (Raillietina) johri (Cestoda: Davaineidae). I. Non specific phosphatases. Journal of Helminthology, 53, 4549.CrossRefGoogle Scholar
Saz, H. J. (1970) Comparative energy metabolisms of some parasitic helminths. Journal of Parasitology, 56, 634642.CrossRefGoogle ScholarPubMed
Schwartz, A., Lindermeyer, G. E. & Allen, J. C. (1975) The sodium-potassium adenosine triphosphatase: Pharmacological, physiological and biochemical aspects. Pharmacological Review, 27, 3134.Google ScholarPubMed
Sutherland, E. W. (1949) Activation of phosphoglucomutase by metal binding agents. Journal of Biological Chemistry, 180, 12791284.CrossRefGoogle ScholarPubMed
Smyth, J. D. & Halton, D. W. (1983) The Physiology of Trematodes. 2nd Edn.Cambridge University Press: London.Google Scholar
Van Den Bossche, H. (1972) Biochemical effects of the anthelminthic drug mebendazole. In: Comparative Biochemistry of Parasites (editor, Van Den Bossche, H.), pp. 139157. Academic Press, New York.CrossRefGoogle Scholar
Van Den Bossche, H. (1976) The molecular basis of anthelmintic action. In: Biochemistry of Parasites and Host-Parasite Relationship (editor, Van den, Bossche), pp. 553572. North Holland: Amsterdam.Google Scholar
Van Den Bossche, H. (1980) Action of mebendazole and flubendazole. W. H. O. Report of Vth meeting of the scientific working group in filariasis. TDR/FIL-SWG (5)/80.3, 2223.Google Scholar
Van Den Bossche, H. & De NOLLIN, S. (1973) Effects of mebendazole on the absorption of low molecular weight nutrients by Ascaris suum. International Journal for Parasitology, 3, 401407.CrossRefGoogle ScholarPubMed
Verheyen, A., Borgers, M., Vanparijs, C. & Thienpont, D. (1976) The effects of mebendazole on the ultrastructure of cestodes. In: Biochemistry of Parasites and Host-Parasite Relationships. (editor, Van den Bossche, H.), pp. 605618. Elsevier/North Holland Biomedical Press: Amsterdam.Google Scholar
Von Brand, T. (1973) Biochemistry of Parasites. 2nd edition, Academic Press, New York, London.Google Scholar
Von Brand, T. (1979) Biochemistry and Physiology of Endoparasites. Elsevier/North Holland Medical Press: Amsterdam/New York.Google Scholar