Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-30T23:26:34.044Z Has data issue: false hasContentIssue false

Endoparasitic diversity from the Southern Ocean: is it really low in Antarctic fish?

Published online by Cambridge University Press:  11 August 2020

G. Muñoz*
Affiliation:
Centro Costa-R, Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso, Avenida Borgoño 16344, Viña del Mar, Chile
F.D. Cartes
Affiliation:
Centro Costa-R, Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso, Avenida Borgoño 16344, Viña del Mar, Chile
*
Author for correspondence: G. Muñoz, E-mail: [email protected]

Abstract

The biodiversity and composition of endoparasites in fish obtained from the Antarctic and subantarctic zones are compared in this study. Several fish were collected in the summer from Antarctica (King George Island) and the Southern Pacific coast (Strait of Magellan and Almirante Montt Gulf). This database was complemented with published information on fish endoparasite communities from both zones, with specimens of fish sample size n ≥ 15. Thus, 31 fish species were analysed in this study, which altogether had 79 parasite species. Diversity indices were calculated for the parasite community of each fish species. Then they were compared between the Antarctic and subantarctic zones. Parasite species composition and host specificity (as the number of fish species used by a parasite species) were also analysed and compared between zones. The diversity indices and the abundance of parasites were significantly higher in the Antarctic than the subantarctic fish. Few parasite species (7.6%) were shared between fish from both zones, showing significant differences in parasite composition. Antarctic parasites were less host-specific than subantarctic parasites, which allowed the coexistence of several parasite species in the fish. The high parasite abundance in Antarctic fish could trigger sympatric speciation in certain parasitic lineages or the exploitation of new resources, resulting in more parasite species than those in subantarctic environments. The high abundance of Antarctic parasites implies different methods and rates of transmission than those of subantarctic parasites. In addition, more alternative fish hosts were used by the Antarctic than subantarctic parasites. This altogether indicates that host–parasite interaction dynamics significantly differ between the Antarctic and subantarctic systems.

Type
Research Paper
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J (2009) Species Richness: Patterns in the Diversity of Life. 380 pp. Chichester, Springer, Praxis Publishing Ltd.CrossRefGoogle Scholar
Bosch, NE, Gonçalves, J, Erzini, K and Tuya, F (2017) “How” and “what” matters: sampling method affects biodiversity estimates of reef fishes. Ecology and Evolution 7(13), 48914906.CrossRefGoogle Scholar
Brickle, P, MacKenzie, K and Pike, A (2005) Parasites of the Patagonian toothfish, Dissostichus eleginoides Smitt 1898, in different parts of the Subantarctic. Polar Biology 28, 663671.CrossRefGoogle Scholar
Campbell, HA, Fraser, KPP, Bishop, CM, Peck, LS and Egginton, S (2008) Hibernation in an Antarctic fish: on ice for winter. PLoS ONE 3(3), e1743.CrossRefGoogle Scholar
Carballo, MC, Cremonte, F, Navone, GT and Timi, JT (2012) Similarity I parasite community structure may be used to trace latitudinal migrations of Odontesthes smitti along Argentinian coasts. Journal of Fish Biology 80, 1528.CrossRefGoogle Scholar
Chao, A, Chazdo, RL, Cowell, RK and Shen, T-J (2006) Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62, 361371.CrossRefGoogle ScholarPubMed
Clarke, KR and Warwick, RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. 144 pp. Bournemouth, Natural Environment Research Council.Google Scholar
Clarke, KR and Warwick, RM (2001) A further biodiversity index applicable to species lists: variation I taxonomic distinctness. Marine Ecology Progress Series 216, 265278.CrossRefGoogle Scholar
De Broyer, C, Koubbi, P, Griffiths, HJ, et al. (2014) Biogeographic atlas of the Southern Ocean. 498 pp. Cambridge, Scientific Committee on Antarctic Research.Google Scholar
DeWitt, HH, Heemstra, PC and Gon, O (1990) Nototheniidae. pp. 279331in Gon, O and Heemstra, PC (Eds) Fishes of the Southern Ocean. Grahamstown, J. L. B. Smith Institute of Ichthyology.Google Scholar
Eastman, JT (1993) Antarctic fish biology: evolution in a unique environment. 322 pp. New York, Academic Press, Inc.Google Scholar
Eastman, JT (2005) The nature of the diversity of Antarctic fishes. Polar Biology 28, 93107.CrossRefGoogle Scholar
Flores, V, Semenas, L, Rauque, C, Vega, R, Fernandez, V and Lattuca, M (2016) Macroparasites of silversides (Atherinopsidae: Odontesthes) in Argentina. Revista Mexicana de Biodiversidad 87, 919927.CrossRefGoogle Scholar
Frank, SA (1993) Evolution of host-parasite diversity. Evolution 47(6), 17211732.CrossRefGoogle ScholarPubMed
George-Nascimento, M and Arancibia, H (1994) La fauna parasitaria y la morfometría de la merluza austral Merluccius australis (Hutton) como indicadoras de unidades de stock. Biología Pesquera 23, 3147.Google Scholar
George-Nascimento, M, Mellado, A, Saavedra, S and Carvajal, J (2009) Variabilidad de las comunidades de parásitos metazoos del róbalo Eleginops maclovinus (Cuvier & Valenciennes, 1830) (Pisces: Eleginopidae) en Chile. Revista Chilena de Historia Natural 82(2), 199207.CrossRefGoogle Scholar
George-Nascimento, M, Moscoso, D, Niklitschek, E and González, K (2011) Variación geográfica de las comunidades de parásitos de la merluza de tres aletas Micromesistius australis al sur de Sudamérica. Revista de Biología Marina y Oceanografía 46(1), 5358.CrossRefGoogle Scholar
Gómez, A and Nichols, A (2013) Neglected wild life: parasitic biodiversity as a conservation target. International Journal for Parasitology: Parasites and Wildlife 2, 222227.Google ScholarPubMed
González, MT, Barrientos, C and Moreno, CA (2006) Biogeographical patterns in endoparasite communities of a marine fish (Sebastes capensis Gmelin) with extended range in the Southern Hemisphere. Journal of Biogeography 33, 10861095.CrossRefGoogle Scholar
Gordeev, II and Sokolov, SG (2016) Parasites of the Antarctic toothfish (Dissostichusmawsoni Norman, 1937) (Perciformes, Nototheniidae) in the Pacific sector of the Antarctic. Polar Research 35, 29364.CrossRefGoogle Scholar
Guegan, JF and Kennedy, CR (1996) Parasite richness/ sampling effort/ host range: the fancy three-piece jigsaw puzzle. Parasitology Today 12, 367369.CrossRefGoogle ScholarPubMed
Iwami, T and Kock, KH (1990) Channichthyidae. pp. 388–99 in Gon, O and Heemstra, PC (Eds) Fishes of the Southern Ocean. Grahamstown, J. L. B. Smith Institute of Ichthyology.Google Scholar
Jeżewski, W, Zdzitowiecki, K and Laskowski, Z (2014) Digenean in notothenioid fish in the Beagle Channel (Magallanic sub-region, Sub-Antarctica). Acta Parasitologica 59(1), 4249.CrossRefGoogle Scholar
Jovani, R and Tella, JL (2006) Parasite prevalence and sample size: misconceptions and solutions. TRENDS in Parasitology 22(5), 214218.CrossRefGoogle ScholarPubMed
Kabata, Z (1965) Parasitic Copepoda of fishes. Report B.A.N.Z. Antarctic Research Expedition 1929–1931 (B), 8(6), 1–16.Google Scholar
Krasnov, BR, Shenbrot, GI, Khokhlova, IS and Degen, AA (2004) Relationship between host diversity and parasite diversity: flea assemblages on small mammals. Journal of Biogeography 31, 18571866.CrossRefGoogle Scholar
Kuhn, T, Zizka, VMA, Münster, J, Klapper, R, Mattiucci, S, Kochmann, J and Klimpel, S (2018) Lighten up the dark: metazoan parasites as indicators for the ecology of Antarctic crocodile icefish (Channichthyidae) from the north-west Antarctic Peninsula. PeerJ 6, e4638.CrossRefGoogle ScholarPubMed
Laskowski, Z and Jeżewski, W (2008) Cystacanths of Acanthocephala in notohenioid fish form the Beagle Channel (sub-Antarctica). Systematic Parasitology 70(2), 107117.CrossRefGoogle Scholar
Laskowski, Z and Rocka, A (2014) Molecular identification larvae of Onchobothrium antarcticum (Cestoda: Tetraphyllidea) from marbled rockcod, Notothenia rossii in Admiralty Bay (King George Island, Antarctica). Acta Parasitologica 59, 767772.CrossRefGoogle Scholar
Laskowski, Z and Zdzitowiecki, K (2017) Acanthocephalans in Sub-Antarctic and Antarctic. pp. 141182in Klimpel, S, Kuhn, T and Mehlhorn, H (Eds) Biodiversity and evolution of parasitic life in the Southern Ocean, parasitology research monograph, Vol. 9. Cham, Springer Nature.CrossRefGoogle Scholar
Laskowski, Z, Rocka, A, Zdzitowiecki, K and Ozouf-Costaz, C (2007) Ocurrence of endoparasitic worms in dusky notothen Trematomus newesi (Actinopterygii Nototheniidae), at Adélie Land, Antarctica. Polish Polar Research 28(1), 3742.Google Scholar
Laskowski, Z, Jeżewski, W and Zdzitowiecki, K (2010) New data on the occurrence of acanthocephalan in Antartctic amphipoda. Acta Parasitologica 55, 161166.CrossRefGoogle Scholar
MacKenzie, K, Brickle, P, Hemmingsen, W and George-Nascimento, M (2013) Parasites of hoki, Macruronus magellanicus, in the Southwest Atlantic and Southeast Pacific Oceans, with an assessment of their potential value as biological tags. Fisheries Research 145, 15.CrossRefGoogle Scholar
Magurran, AE (1988) Ecological diversity and its measurements. 179 pp. London, Croom Helm.CrossRefGoogle Scholar
Muñoz, G and Rebolledo, M (2019) Comparison of the parasite community of two notothens, Notothenia rossii and N. coriiceps (Pisces: Nothotenniidae), from King George-Island, Antarctica. Journal of Helminthology 93(6), 732737.CrossRefGoogle Scholar
Münster, J, Kochmann, J, Grigat, J, Klimpel, S and Kuhn, T (2017) Parasite fauna of the Antarctic dragonfish Parachaenichthys charcoti (Perciformes: Bathydraconidae) and closely related Bathydraconidae from the Antarctic Peninsula, Southern Ocean. Parasites & Vectors 10, 235.CrossRefGoogle ScholarPubMed
Navarrete, AH, Lagos, NA and Ojeda, FP (2014) Latitudinal diversity patterns of Chilean coastal fishes: searching for causal processes. Revista Chilena de Historia Natural 87, 2.CrossRefGoogle Scholar
Nelson, JS (1994) Fishes of the world. 3rd edn. 600 pp. New York, John Wiley & sons.Google Scholar
Oğuz, MC, Tepe, Y, Belk, MC, Heckmann, RA, Aslan, B, Gürgen, M, Bray, RA and Akgül, U (2015) Metazoan parasites of Antarctic fishes. Turkiye Parazitoloji Derneğig 39, 174178.CrossRefGoogle ScholarPubMed
Ojeda, FP, Labra, FA and Muñoz, AA (2000) Biogeographic patterns of Chilean littoral fishes. Revista Chilena de Historia Natural 73, 625641.CrossRefGoogle Scholar
Oliva, M (2001) Metazoan parasites of Macruronus magellanicus from southern Chile as biological tags. Journal of Fish Biology 58(6), 16171622CrossRefGoogle Scholar
Oliva, ME, Espinola, JF and Ñacari, LA (2016) Metazoan parasites of Brama australis from southern Chile: a tool for stock discrimination? Journal of Fish Biology 88, 11431148.CrossRefGoogle ScholarPubMed
Paggi, L, Mattiucci, S, Gibson, D, Berland, B, Nascetti, G, Cianchi, R and Bullini, L (2000) Pseudoterranova decipiens species A and B (Nematoda, Ascaridoidae): nomenclatural designation, morphological diagnostic characters and genetic markers. Systematic Parasitology 45, 185197.CrossRefGoogle Scholar
Palm, HW, Klimpel, S and Walter, T (2007) Demersal fish parasite fauna around the South Shetland Island: high species richness and low host specificity in deep Antarctic waters. Polar Biology 30, 15131522.CrossRefGoogle Scholar
Paschoal, J, Viera, F, Cezar, A and Luque, JL (2014) Dichelyne (Cucullanellus) tornquisti n. sp. (Nematoda: Cucullanidae) from Corocoro Grunt, Orthopristis ruber (Cuvier, 1830) (Perciformes: Haemulidae) from Southeastern Brazil. Journal of Parasitology 100(2), 215220.CrossRefGoogle ScholarPubMed
Pickard, GL and Emery, WJ (1990) Descriptive physical oceanography, an introduction. 5th edn. 560 pp. London,Butterworth–Heinemann.Google Scholar
Poulin, R (2007) Evolutionary ecology of parasites. 332 pp. Princeton, New Jersey, Princeton University Press.Google Scholar
Poulin, R (2014) Parasite biodiversity revisited: frontiers and constraints. International Journal for Parasitology 44(9), 581589.CrossRefGoogle ScholarPubMed
Poulin, R and Morand, S (2000) The diversity of parasites. The Quarterly Review of Biology 75, 277293.CrossRefGoogle ScholarPubMed
Reyes, P and Hüne, M (2012) Peces del Sur de Chile. 498 pp. Santiago, Ocho Libros Editores.Google Scholar
Rijo-Ferreira, F, Takahashi, JS and Figueiredo, LM (2017) Circadian rhythms in parasites. PLoS Pathogens 13(10), e1006590.CrossRefGoogle ScholarPubMed
Rocka, A (2004) Nematodes of the Antarctic fishes. Polish Polar Research 25, 135152.Google Scholar
Rocka, A (2006) Helminths of Antarctic fishes: life cycle biology, specificity and geographical distribution. Acta Parasitologica 51, 2635.CrossRefGoogle Scholar
Rohde, K (1984) Zoogeography of marine parasites. Helgoländer Meeresuntersuchungen 37, 3552.CrossRefGoogle Scholar
Rohde, K, Ho, J-S, Smales, L and Williams, R (1998) Parasites of Antarctic fishes: Monogenea, Copepoda and Acanthocephala. Marine and Freshwater Research 49, 121125.CrossRefGoogle Scholar
Rokicki, J and Skorá, K (1986) Dynamics of Eubrachiella antarctica (Quidor, 1906), incidence in Notothenia gibberifrons Lonnberg, 1905). Wiadomosci Parazytologiczne 32, 511515.Google Scholar
Rokicki, J and Zdzitowiecki, K (1991) Dynamics of Eubrachiella antarctica (Quidor, 1906) (Copepoda) occurrence in Notothenia rossii marmorata (Fischer, 1885). Acta Ichthyologica et Piscatoria 21, 4552.CrossRefGoogle Scholar
Rokicki, J, Wägele, J-W and Strömberg, J-O (1992) Note on the occurrence and hosts of some parasitic Antarctic isopods (Crustacea: Isopoda). Polar Research 13(1), 5357.Google Scholar
Sandersfeld, T, Mark, FC and Knust, R (2017) Temperature-dependent metabolism in Antarctic fish: do habitat temperature conditions affect thermal tolerance ranges? Polar Biology 40, 141149.CrossRefGoogle Scholar
Santoro, M, Mattiucci, S, Cipriani, P, Bellisario, B, Romanelli, F, Cimmaruta, R and Nascetti, G (2014) Parasite communities of icefish (Chionodraco hamatus) in the Ross Sea (Antarctica): Influence of the host sex on the helminth infracommunity structure. PLoS ONE 9(2), e88876.CrossRefGoogle ScholarPubMed
Sassal, P, Desdevises, Y and Morand, S (1998) Host-specialization and species diversity in fish parasites: phylogenetic conservatism? Ecography 21, 639643.CrossRefGoogle Scholar
Sosiński, J and Janusz, J (1986) The occurrence of the parasite Eubrachiella gaini Quidor, 1913 in Antarctic fishes of the family Chaenichthyidae. Acta Ichthyologica et Piscatoria 16, 87105.CrossRefGoogle Scholar
Summers, K, McKeon, S, Sellars, J, Keusenkothen, M, Morris, J, Gloeckner, D, Pressley, C, Price, B and Snow, H (2003) Parasitic exploitation as an engine of diversity. Biological Reviews of the Cambridge Philosophical Society 78(4), 639675.CrossRefGoogle ScholarPubMed
Timi, JT, Lanfranchi, AL and Etchegoin, JA (2009) Seasonal stability and spatial variability of parasites in Brazilian sandperch Pinguipes brasilianus from the Northern Argentine Sea: evidence for stock discrimination. Journal of Fish Biology 74(6), 12061225.CrossRefGoogle ScholarPubMed
Toumisto, H (2010) A consistent terminology for quantifying species diversity? Yes, it does exist. Oecologia 164, 853860.CrossRefGoogle Scholar
Vales, DG, García, NA, Crespo, EA and Timi, JT (2011) Parasites of a marine benthic fish in the Southwestern Atlantic: searching for geographical recurrent patterns of community structure. Parasitology Research 108, 261272.CrossRefGoogle ScholarPubMed
Walter, T, Palm, HW, Piepiorka, S and Rückert, S (2002) Parasites of the Antarctic rattail Macrourus whitsoni (Regan, 1913) (Macrouridae, Gadiformes). Polar Biology 25, 633640.CrossRefGoogle Scholar
Wilcox, RR (2009) Comparing Pearson correlations: dealing with heteroscedasticity and nonnormality. Communications in Statistics - Simulation and Computation 38(10), 22202234.CrossRefGoogle Scholar
Windsor, DA (1995) Equal rights for parasites. Conservation Biology 9, 12.CrossRefGoogle Scholar
Zar, JH (1996) Biostatistical Analysis. 3rd edn. Upper Saddle River, New Jersey, Prentice Hall International.Google Scholar
Zdzitowiecki, K (1990) Antarctic representative of the genus Macvicaria Gibson & Bray, 1982 (Digenea: Opecoelidae), with descriptions of two new species. Systematic Parasitology 16, 169179.CrossRefGoogle Scholar
Zdzitowiecki, K (1997) Antarctic Digenea parasites of fishes. 156 pp. Königstein, Koeltz Scientific Book.Google Scholar
Zdzitowiecki, K and Ozouf-Costaz, C (2013) Contribution to the knowledge of the parasitic fauna of fish off Adelie Land, Antarctica. Polish Polar Research 34(4), 429435.CrossRefGoogle Scholar
Zdzitowiecki, K and White, MG (1992) Acanthocephalan infection of inshore fish at the South Orkney Islands. Antarctic Sciences 8, 273276.CrossRefGoogle Scholar