Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T00:28:07.806Z Has data issue: false hasContentIssue false

Diversity of Rhabdochona mexicana (Nematoda: Rhabdochonidae), a parasite of Astyanax spp. (Characidae) in Mexico and Guatemala, using mitochondrial and nuclear genes, with the description of a new species

Published online by Cambridge University Press:  14 February 2019

A. Santacruz
Affiliation:
Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Ap. Postal 70-153, C.P. 04510, Ciudad de México, Mexico Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
C.P. Ornelas-García
Affiliation:
Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Ap. Postal 70-153, C.P. 04510, Ciudad de México, Mexico
G. Pérez-Ponce de León*
Affiliation:
Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Ap. Postal 70-153, C.P. 04510, Ciudad de México, Mexico
*
Author for correspondence: G. Pérez-Ponce de León E-mail: [email protected]

Abstract

Among fish parasitic nematodes Rhabdochona is one of the most speciose genera, with c. 100 species. Twelve congeneric species occur in Mexican freshwater fishes, in a region located between the Nearctic and Neotropical biogeographical regions. Host association and biogeographical history have determined the high species richness of Rhabdochona in Mexico. One of these species, Rhabdochona mexicana, is highly specific to the characid genus Astyanax. Characids are a group of freshwater fish with Neotropical affinity. In this paper, we explore the genetic diversity of R. mexicana through samples obtained from populations of Astyanax spp. across river basins of Mexico and Guatemala. Sequences of one mitochondrial and two ribosomal genes were obtained from 38 individuals and analysed using Maximum Likelihood and Bayesian Inference analysis. Phylogenetic analyses using cox1, and a concatenated alignment of 18S + 28S + cox1 recovered two genetic lineages. One of them corresponded with R. mexicana sensu stricto; this lineage included three reciprocally monophyletic subgroups; the other lineage was highly divergent and represented a putative candidate species. A detailed morphological study was conducted to corroborate the molecular findings. We describe a new species herein and discuss the implications of using molecular tools to increase our knowledge about the diversity of a speciose genus such as Rhabdochona.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilar-Aguilar, R, Rosas-Valdez, R and Pérez-Ponce de León, G (2010) Rhabdochona ictaluri sp. nov. (Nematoda, Rhabdochonidae) from ictalurid catfishes in Mexico. Acta Parasitologica 55, 276280.Google Scholar
Arai, HP and Smith, JW (2016) Guide to the parasites of fishes of Canada part V: Nematoda. Zootaxa 4185, 1274.Google Scholar
Bessho, Y, Ohama, T and Osawa, S (1992) Planarian mitochondria II. The unique genetic code as deduced from cytochrome c oxidase subunit I gene sequences. Journal of Molecular Evolution 34, 331335.Google Scholar
Blaxter, ML et al. (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392, 71.Google Scholar
Blouin, MS (2002) Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. International Journal for Parasitology 32, 527531.Google Scholar
Casiraghi, M et al. (2001) A phylogenetic analysis of filarial nematodes: comparison with the phylogeny of Wolbachia endosymbionts. Parasitology 122, 93103.Google Scholar
Caspeta-Mandujano, JM, Moravec, F and Salgado-Maldonado, G (2000) Rhabdochona mexicana sp. n. (Nematoda: Rhabdochonidae) from the intestine of characid fishes in Mexico. Folia Parasitologica 47, 211215.Google Scholar
Caspeta-Mandujano, JM et al. (2005) Nematode parasites of the characid freshwater fish Bryxon guatemalensis in the Usumacinta River, Chiapas, Mexico. Helminthologia 42, 4144.Google Scholar
Černotíková, E, Horák, A and Moravec, F (2011) Phylogenetic relationships of some spirurine nematodes (Nematoda: Chromadorea: Rhabditida: Spirurina) parasitic in fishes inferred from SSU rRNA gene sequences. Folia Parasitologica 58, 135148.Google Scholar
Chilton, NB et al. (2016) Detection of cryptic species of Rugopharynx (Nematoda: Strongylida) from the stomachs of Australian macropodid marsupials. International Journal for Parasitology: Parasites and Wildlife 5, 124133.Google Scholar
Choudhury, A and Nadler, SA (2018) Phylogenetic relationships of spiruromorph nematodes (Spirurina: Spiruromorpha) in North American freshwater fishes. Journal of Parasitology 104, 496504.Google Scholar
Cremonte, F et al. (2002) Redescription of Rhabdochona (Rhabdochona) acuminata (Nematoda: Rhabdochonidae) from freshwater fishes from Patagonia (Argentina), the geographical implications. Journal of Parasitology 88, 934941.Google Scholar
De Sousa, A et al. (2018) The importance of integrative approaches in nematode taxonomy: the validity of Parapharyngodon and Thelandros as distinct genera. Journal of Helminthology, https://doi.org/10.1017/S0022149X1800069X.Google Scholar
Derycke, S et al. (2005) Mitochondrial DNA variation and cryptic speciation within the free-living marine nematode Pellioditis marina. Marine Ecology Progress Series 300, 91103.Google Scholar
Fišer, C, Robinson, CT and Malard, F (2018) Cryptic species as a window into the paradigm shift of the species concept. Molecular Ecology 27, 613635.Google Scholar
Folmer, O et al. (1994) Conserved primers for PCR amplification of mitochondrial DNA from different invertebrate phyla. Molecular Marine Biology and Biotechnology 3, 294299.Google Scholar
García-Varela, M and Nadler, SA (2005) Phylogenetic relationships of Palaeacanthocephala (Acanthocephala) inferred from SSU and LSU rDNA gene sequences. Journal of Parasitology 91, 14011409.Google Scholar
Garrido-Olvera, L, García-Prieto, L and Pérez-Ponce de León, G (2006) Checklist of the adult nematode parasites of fishes in freshwater localities from Mexico. Zootaxa 120, 145.Google Scholar
Gustafson, PV (1949) Description of some species of Rhabdochona (Nematoda: Thelaziidae). Journal of Parasitology 35, 534540.Google Scholar
Hoffman, GL (1999) Parasites of North American Freshwater Fishes. Ithaca, NY: Cornell University Press.Google Scholar
Jorge, F et al. (2013) Cryptic species unveiled: the case of the nematode Spauligodon atlanticus. Journal of Zoological Systematics and Evolutionary Research 51, 187202.Google Scholar
Kearse, M et al. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 16471649.Google Scholar
Kumar, S, Stecher, G and Tamura, K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology Evolution 33, 18701874.Google Scholar
Maddison, WP and Maddison, DR (2016) Mesquite: a modular system for evolutionary analysis. Version 3.10, http://mesquiteproject.orgGoogle Scholar
McWilliam, H et al. (2013) Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Research, 41 (Web Server issue): W597-600 doi:10.1093/nar/gkt376.Google Scholar
Mejía-Madrid, HH, Choudhury, A and Pérez-Ponce de León, G (2007a) Phylogeny and biogeography of Rhabdochona Railliet, 1916 (Nematoda: Rhabdochonidae) species from the Americas. Systematic Parasitology 67, 118.Google Scholar
Mejía-Madrid, HH, Vázquez-Domínguez, E and Pérez-Ponce de León, G (2007b) Phylogeography and freshwater basins in central Mexico: recent history as revealed by the fish parasite Rhabdochona lichtenfelsi (Nematoda). Journal of Biogeography 34, 787801.Google Scholar
Miranda, RR et al. (2008) Mitochondrial DNA variation of the dog hookworm Ancylostoma caninum in Brazilian populations. Veterinary Parasitology 151, 6167.Google Scholar
Molin, R (1860) Una monografia del genre Spiroptera. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, math.-naturwiss 38, 9111005.Google Scholar
Moravec, F (1998) Nematodes of Freshwater Fishes of the Neotropical Region. Prague: Academia Praha.Google Scholar
Moravec, F (2010) Some aspects of the taxonomy, biology, possible evolution and biogeography of nematodes of the spirurine genus Rhabdochona Railliet, 1916 (Rhabdochonidae, Thelazioidea). Acta Parasitologica, 55, 144160.Google Scholar
Moravec, F et al. (2012) Host–parasite relationships of Rhabdochona kidderi Pearse, 1936 (Nematoda: Rhabdochonidae) in fishes of the Lacantún River in the Lacandon rain forest of Chiapas State, southern Mexico, with a key to Mexican species of Rhabdochona Railliet, 1916. Systematic Parasitology 82, 112.Google Scholar
Nadler, SA and Hudspeth, DS (1998) Ribosomal DNA and phylogeny of the Ascaridoidea (Nemata: Secernentea): implications for morphological evolution and classification. Molecular Phylogenetics and Evolution 10, 221236.Google Scholar
Nadler, SA and Pérez-Ponce de León, G (2011) Integrating molecular and morphological approaches for characterizing parasite cryptic species: implications for parasitology. Parasitology 138, 16881709.Google Scholar
Nadler, SA, Bolotin, E and Stock, SP (2006) Phylogenetic relationships of Steinernema Travassos, 1927 (Nematoda: Cephalobina: Steinernematidae) based on nuclear, mitochondrial and morphological data. Systematic Parasitology 63, 159175.Google Scholar
Nadler, et al. (2007) Molecular phylogeny of clade III nematodes reveals multiple origins of tissue parasitism. Parasitology 134, 14211442.Google Scholar
Ornelas-García, CP, Domínguez-Domínguez, O and Doadrio, I (2008) Evolutionary history of the fish genus Astyanax Baird & Girard (1854) (Actinopterygii, Characidae) in Mesoamerica reveals multiple morphological homoplasies. BMC Evolutionary Biology 8, 340.Google Scholar
Pérez-Ponce de León, G (2003) Biodiversity and biogeographic patterns in the Mesa Central of México: insights from host–parasite systems. Journal of Parasitology 89, 126133.Google Scholar
Pérez-Ponce de León, G and Choudhury, A (2005) Biogeography of helminth parasites of freshwater fishes in Mexico: the search for patterns and processes. Journal of Biogeography 32, 645659.Google Scholar
Pérez-Ponce de León, G and Nadler, SA (2010) What we don't recognize can hurt us: a plea for awareness about cryptic species. Journal of Parasitology 96, 453464.Google Scholar
Pérez-Ponce de León, G et al. (2009) Survey of the endohelminth parasites of freshwater fishes in the upper Mezquital River Basin, Durango State, Mexico. Zootaxa 2164, 120.Google Scholar
Pérez-Ponce de León, G et al. (2010) Helminth parasites of freshwater fishes, Nazas River basin, northern Mexico. Check List 6, 2635.Google Scholar
Pleijel, F et al. (2008) Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogenetics and Evolution 48, 369371.Google Scholar
Pinto, MR et al. (2010) Rhabdochona (R.) uruyeni (Nematoda, Rhabdochonidae) in Brazil: present status of South American Rhabdochona Railliet with a worldwide bibliographical survey of the genus from 1845 to 2010. Neotropical Helminthology 4, 4969.Google Scholar
Posada, D (2008) jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution 25, 12531256.Google Scholar
Ramallo, G (2005) Observations on two Rhabdochona species (Nematoda: Rhabdochonidae) from freshwater fishes in Argentina, including description of Rhabdochona fabianae n. sp. Journal of Parasitology 91, 415419.Google Scholar
Ristau, K, Steinfartz, S and Traunspurger, W (2013) First evidence of cryptic species diversity and significant population structure in a widespread freshwater nematode morphospecies (Tobrilus gracilis). Molecular Ecology 22, 45624575.Google Scholar
Ronquist, F and Huelsenbeck, JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.Google Scholar
St-Onge, M, LaRue, B and Charpentier, G (2008) A molecular revision of the taxonomic status of mermithid parasites of black flies from Quebec (Canada). Journal of Invertebrate Pathology 98, 299306.Google Scholar
Stamatakis, A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 13121313.Google Scholar
Supplementary material: PDF

Santacruz et al. supplementary material

Figures S1-S4 and Tables S1-S2

Download Santacruz et al. supplementary material(PDF)
PDF 1.1 MB