Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T13:45:38.331Z Has data issue: false hasContentIssue false

Diets for fat sets

Published online by Cambridge University Press:  01 November 1998

MARTIN ERWIG
Affiliation:
FernUniversität Hagen, Praktische Informatik IV. 58084 Hagen, Germany (e-mail: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we describe the discrete interval encoding tree for storing subsets of types having a total order and a predecessor and a successor function. In the following, we consider for simplicity only the case for integer sets; the generalization is not difficult.

The discrete interval encoding tree is based on the observation that the set of integers {i[mid ]a[les ]i[les ]b} can be perfectly represented by the closed interval [a, b]. The general idea is to represent a set by a binary search tree of integers in which maximal adjacent subsets are each represented by an interval. For example, inserting the sequence of numbers 6, 9, 2, 13, 8, 14, 10, 7, 5 into a binary search tree, respectively, into a discrete interval encoding tree results in the tree structures shown in figure 1.

The efficiency of the interval representation, both in terms of space and time, improves with the density of the set, i.e. with the number of adjacencies between set elements. So what we propose is a ‘diet’ (discrete interval encoding tree) for ‘fat’ sets in the sense of ‘the same amount of information with less nodes’.

Type
FUNCTIONAL PEARLS
Copyright
© 1998 Cambridge University Press
Supplementary material: Link

Erwig Supplementary Material

Link
Submit a response

Discussions

No Discussions have been published for this article.