Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T04:09:48.309Z Has data issue: false hasContentIssue false

Algorithm + strategy = parallelism

Published online by Cambridge University Press:  01 January 1998

P. W. TRINDER
Affiliation:
Department of Computing Science, University of Glasgow, Glasgow, UK
K. HAMMOND
Affiliation:
Division of Computing Science, University of St Andrews, St Andrews, UK
H.-W. LOIDL
Affiliation:
Department of Computing Science, University of Glasgow, Glasgow, UK
S. L. PEYTON JONES
Affiliation:
Department of Computing Science, University of Glasgow, Glasgow, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The process of writing large parallel programs is complicated by the need to specify both the parallel behaviour of the program and the algorithm that is to be used to compute its result. This paper introduces evaluation strategies: lazy higher-order functions that control the parallel evaluation of non-strict functional languages. Using evaluation strategies, it is possible to achieve a clean separation between algorithmic and behavioural code. The result is enhanced clarity and shorter parallel programs. Evaluation strategies are a very general concept: this paper shows how they can be used to model a wide range of commonly used programming paradigms, including divide-and-conquer parallelism, pipeline parallelism, producer/consumer parallelism, and data-oriented parallelism. Because they are based on unrestricted higher-order functions, they can also capture irregular parallel structures. Evaluation strategies are not just of theoretical interest: they have evolved out of our experience in parallelising several large-scale parallel applications, where they have proved invaluable in helping to manage the complexities of parallel behaviour. Some of these applications are described in detail here. The largest application we have studied to date, Lolita, is a 40,000 line natural language engineering system. Initial results show that for these programs we can achieve acceptable parallel performance, for relatively little programming effort.

Type
Research Article
Copyright
© 1998 Cambridge University Press
Submit a response

Discussions

No Discussions have been published for this article.