Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-17T17:33:52.705Z Has data issue: false hasContentIssue false

Why, how, and when, MHD turbulence becomes two-dimensional

Published online by Cambridge University Press:  20 April 2006

JoëL Sommeria
Affiliation:
Institut de Mécanique, Université de Grenoble, B.P. 53X, 38041 Grenoble Cedex, France
René Moreau
Affiliation:
Institut de Mécanique, Université de Grenoble, B.P. 53X, 38041 Grenoble Cedex, France

Abstract

A description of MHD turbulence at low magnetic Reynolds number and large interaction parameter is proposed, in which attention is focussed on the role of insulating walls perpendicular to a uniform applied magnetic field. The flow is divided in two regions: the thin Hartmann layers near the walls, and the bulk of the flow. In the latter region, a kind of electromagnetic diffusion along the magnetic field lines (a degenerate form of Alfvén waves) is displayed, which elongates the turbulent eddies in the field direction, but is not sufficient to generate a two-dimensional dynamics. However the normal derivative of velocity must be zero (to leading order) at the boundaries of the bulk region (as at a free surface), so that when the length scale l perpendicular to the magnetic field is large enough, the corresponding eddies are necessarily two-dimensional. Furthermore, if l is not larger than a second limit, the Hartmann braking effect is negligible and the dynamics of these eddies is described by the ordinary Navier-Stokes equations without electromagnetic forces. MHD then appears to offer a means of achieving experiments on two-dimensional turbulence, and of deducing velocity and vorticity from measurements of electric field.

Type
Research Article
Copyright
© 1982 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alemany, A., Moreau, R., Sulem, P. L. & Frisch, U. 1979 J. de Mécanique, 18, 277.
Batchelor, G. K. 1969 Phys. Fluids Suppl. 12, II233.
Branover, H. 1978 Magnetohydrodynamic Flows in Ducts. Halsted.
Colin De Verdiere, A. 1980 Geophys. Astroph. Fluid Dyn. 15, 213.
Gel'Fgat, Yu. M., Kit, L. G., Peterson, D. A. & Tsinober, A. B. 1971 Magn. Gidrodin. 3, 35.
Heiser, W. H. & Shercliff, J. A. 1965 J. Fluid Mech. 22, 701.
Hopfinger, E. & Browand, F. 1982 Nature (To appear).
Kolesnikov, Yu. B. & Tsinober, A. B. 1974 Izv. A.N.S.S.S.R. Mekh. Zh. i Gaza 4, 176.
Lehnert, B. 1955 Quart. Appl. Math. 12, 321.
Lielausis, O. 1975 Atomic Energy Review 13, 527.
Moreau, R. 1978 In Dynamic Measurements in Unsteady Flows. Proceedings of Dynamic Flow Conference, pp. 6579.
Platnieks, I. A. & Freibergs, Yu. Zh. 1972 Magn. Gidrodin. 2, 29.
Roberts, P. H. 1967 An Introduction to Magnetohydrodynamics. Longmans.
Rosant, J. M. 1976 Ecoulements hydromagnetiques turbulents en conduites rectangulaires. Thése 3e cycle, Grenoble.
Shercliff, J. A. 1965 A Textbook of Magnetohydrodynamics. Pergamon.
Sommeria, J. 1980 Tendance à la bidimensionalité de la turbulence M.H.D. Thèse 3e cycle, Grenoble.
Tatsumi, T. & Yanase, S. 1981 J. Fluid Mech. 110, 475.
Votsish, A. D. & Kolesnikov, Yu. B. 1976 Magn. Gidrodin. 3, 25 and 3, 141.