Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T21:08:00.689Z Has data issue: false hasContentIssue false

The ‘whistler-nozzle’ phenomenon

Published online by Cambridge University Press:  20 April 2006

A. K. M. F. Hussain
Affiliation:
Department of Mechanical Engineering, University of Houston, Texas 77004
M. A. Z. Hasan
Affiliation:
Department of Mechanical Engineering, University of Houston, Texas 77004

Abstract

The ‘whistler nozzle’ is a simple device which can induce jet self-excitations of controllable amplitudes and frequencies and appears highly promising for many applications involving turbulent transport, combustion and aerodynamic noise. This paper documents the characteristics of this curious phenomenon for different values of the controlling parameters and explains the phenomenon. It is shown that the whistler excitation results from the coupling of two independent resonance mechanisms: shear-layer tone resulting from the impingement of the pipe-exit shear layer on the collar lip, and organ-pipe resonance of the pipe nozzle. The crucial role of the shear-layer tone in driving the organ-pipe resonance is proven by reproducing the event in pipe–ring and pipe–hole configurations in the absence of the collar. It is also shown that this phenomenon is strongest when the self-excitation frequency matches the ‘preferred mode’ of the jet.

The ‘whistler-nozzle’ phenomenon occurs for both laminar and turbulent initial boundary layers; the excitation can be induced without the pipe nozzle (say, by ring or hole tone) when the exit flow is laminar but not when it is turbulent. Unlike the shear-layer tone and jet tone phenomena, where successive stages overlap, adjacent stages of the whistler-nozzle excitation are separated by ‘dead zones’ where the conditions for both resonance mechanisms cannot be simultaneously met. Also, unlike the shear-layer and jet tones, the whistler frequency cannot be varied continuously by changing the speed. Since the phenomenon is the coupling of two resonance mechanisms, the frequency data appear to defy a simple nondimensional representation for the entire range of its operation. Reasonable collapse of data is achieved, however, when the exit momentum thickness is used as a lengthscale, thus emphasizing the role of the shear-layer tone in the phenomenon.

Type
Research Article
Copyright
© 1983 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bradshaw, P., Ferriss, D. H. & Johnson, R. F. 1964 J. Fluid Mech. 19, 591.
Brown, G. B. 1937 Proc. Phys. Soc. Lond. 49, 493.
Clark, A. R. & Hussain, A. K. M. F. 1979 In Turbulent Shear Flows (London), p. 2.30.
Coles, D. E. 1962 Rand Corp. Rep. R-403-PR.
Crighton, D. & Innes, D. 1981 AIAA Paper 81-0061.
Crow, S. C. & Champagne, F. H. 1971 J. Fluid Mech. 48, 547.
Curle, N. 1953 Proc. R. Soc. Lond. A216, 412.
Hasan, M. A. Z. & Hussain, A. K. M. F. 1979 J. Acoust. Soc. Am. 65, 1140.
Hasan, M. A. Z. & Hussain, A. K. M. F. 1982 J. Fluid Mech. 115, 59.
Hill, W. G. & Greene, P. R. 1977 Trans. ASME I: J. Fluids Engng 99, 520.
Ho, C. & Nosseir, N. S. 1981 J. Fluid Mech. 195, 119.
Husain, Z. D. & Hussain, A. K. M. F. 1979 AIAA J. 12, 48.
Hussain, A. K. M. F. 1981 In The Role of Coherent Structures in Modelling Turbulence and Mixing (ed. J. Jimenez). Lecture Notes in Physics, vol. 136, p. 252.
Hussain, A. K. M. F. & Clark, A. R. 1981 J. Fluid Mech. 104, 263.
Hussain, A. K. M. F. & Zaman, K. B. M. Q. 1975 In Proc. 3rd Interagency Symp. on Univ. Res. in Transportation Noise, Univ. of Utah, p. 314.
Hussain, A. K. M. F. & Zaman, K. B. M. Q. 1978 J. Fluid Mech. 87, 349.
Hussain, A. K. M. F. & Zaman, K. B. M. Q. 1981 J. Fluid Mech. 110, 39.
Hussain, A. K. M. F. & Zaman, K. B. M. Q. 1982 Univ. Houston Rep. FM-14.
Karamcheti, K., Bauer, A. E., Shields, W. L., Stegen, G. R. & Woolley, J. P. 1969 NASA SP-207, p. 207.
Kibens, V. 1980 AIAA J. 18, 434.
Kinsler, L. E. & Frey, A. R. 1962 Fundamentals of Acoustics. Wiley.
Knisely, C. & Rockwell, D. 1981 J. Fluid Mech. 116, 157.
Ko, N. W. M. & Davies, P. O. A. L. 1971 J. Fluid Mech. 50, 49.
Lau, J. C., Fisher, M. J. & Fuchs, H. V. 1972 J. Sound Vib. 22, 379.
Michalke, A. 1965 J. Fluid Mech. 23, 521.
Petersen, R. A. 1978 J. Fluid Mech. 89, 469.
Pfizenmaier, E. 1973 Doctor-Ingenieur thesis, Technische Universität Berlin.
Powell, A. 1961 J. Acoust. Soc. Am. 33, 4.
Rockwell, D. & Naudascher, E. 1979 Ann. Rev. Fluid Mech. 11, 67.
Rockwell, D. & Schachenmann, A. 1982 J. Fluid Mech. 117, 425.
Sarohia, V. 1977 AIAA J. 15, 984.
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1980 J. Fluid Mech. 101, 449.
Ziada, S. & Rockwell, D. 1982 J. Fluid Mech. 118, 79.