Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T19:35:15.519Z Has data issue: false hasContentIssue false

When does a granular material behave like a continuum fluid?

Published online by Cambridge University Press:  18 July 2012

John R. de Bruyn*
Affiliation:
Department of Physics and Astronomy, University of Western Ontario, London, Ontario, N6G 2R1, Canada
*
Email address for correspondence: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A flowing granular material can behave like a collection of individual interacting grains or like a continuum fluid, depending in large part on the energy imparted to the grains. As yet, however, we have no general understanding of how or under what conditions the fluid limit is reached. Marston, Li & Thoroddsen (J. Fluid Mech., this issue, vol. 704, 2012, pp. 5–36) use high-speed imaging to investigate the ejection of grains from a granular bed due to the impact of a spherical projectile. Their high temporal resolution allows them to study the very fast processes that take place immediately following the impact. They demonstrate that for very fine grains and high impact energies, the dynamics of the ejecta is both qualitatively and quantitatively similar to what is seen in analogous experiments with fluid targets.

Type
Focus on Fluids
Copyright
Copyright © Cambridge University Press 2012

References

1. Ambroso, M. A., Kamien, R. D. & Durian, D. J. 2005 Dynamics of shallow impact cratering. Phys. Rev. E 72, 041305.Google Scholar
2. Boudet, J. F., Amarouchene, Y. & Kellay, H. 2006 Dynamics of impact cratering in shallow sand layers. Phys. Rev. Lett. 96, 158001.Google Scholar
3. Deboeuf, S., Gondret, P. & Rabaud, M. 2009 Dynamics of grain ejection by sphere impact on a granular bed. Phys. Rev. E 79, 041306.CrossRefGoogle ScholarPubMed
4. de Bruyn, J. R. & Walsh, A. M. 2004 Penetration of spheres into loose granular media. Can. J. Phys. 82, 439446.Google Scholar
5. de Vet, S. J. & de Bruyn, J. R. 2007 Shape of impact craters in granular media. Phys. Rev. E 76, 041306.Google Scholar
6. de Vet, S. J., Yohannes, B., Hill, K. M. & de Bruyn, J. R. 2010 Collapse of a rectangular well in a quasi-two-dimensional granular bed. Phys. Rev. E 82, 041304.Google Scholar
7. Goldman, D. I. & Umbanhowar, P. 2008 Scaling and dynamics of sphere and disk impact into granular media. Phys. Rev. E 77, 021308.CrossRefGoogle ScholarPubMed
8. Katsuragi, H. & Durian, D. J. 2007 Unified force law for granular impact cratering. Nature Phys. 3, 420423.Google Scholar
9. Marston, J. O., Li, E. Q. & Thoroddsen, S. T. 2012 Evolution of fluid-like granular ejectas generated by sphere impact. J. Fluid Mech. 704, 536.Google Scholar
10. Thoroddsen, S. T., Etoh, T. G., Takehara, K. & Takano, Y. 2004 Impact jetting by a solid sphere. J. Fluid Mech. 499, 139148.CrossRefGoogle Scholar
11. Thoroddsen, S. T. & Shen, A. Q. 2001 Granular jets. Phys. Fluids 13, 46.CrossRefGoogle Scholar
12. Uehara, J. S., Ambroso, M. A., Ojha, R. P. & Durian, D. J. 2003 Low-speed impact crater in loose granular media. Phys. Rev. Lett. 90, 194301.Google Scholar
13. Walsh, A. M., Holloway, K. E., Habdas, P. & de Bruyn, J. R. 2003 Morphology and scaling of impact craters in granular media. Phys. Rev. Lett. 91, 104301.Google Scholar