Published online by Cambridge University Press: 13 June 2018
A group of three multiscale inhomogeneous grids have been tested to generate different types of turbulent shear flows with different mean shear rate and turbulence intensity profiles. Cross hot-wire measurements were taken in a wind tunnel with Reynolds number $Re_{D}$ of 6000–20 000, based on the width of the vertical bars of the grid and the incoming flow velocity. The effect of local drag coefficient $C_{D}$ on the mean velocity profile is discussed first, and then by modifying the vertical bars to obtain a uniform aspect ratio the mean velocity profile is shown to be predictable using the local blockage ratio profile. It is also shown that, at a streamwise location $x=x_{m}$, the turbulence intensity profile along the vertical direction $u^{\prime }(y)$ scales with the wake interaction length $x_{\ast ,n}^{peak}=0.21g_{n}^{2}/(\unicode[STIX]{x1D6FC}C_{D}w_{n})$ ($\unicode[STIX]{x1D6FC}$ is a constant characterizing the incoming flow condition, and $g_{n}$, $w_{n}$ are the gap and width of the vertical bars, respectively, at layer $n$) such that $(u^{\prime }/U_{n})^{2}\unicode[STIX]{x1D6FD}^{2}(C_{D}w_{n}/x_{\ast ,n}^{peak})^{-1}\sim (x_{m}/x_{\ast ,n}^{peak})^{b}$, where $\unicode[STIX]{x1D6FD}$ is a constant determined by the free-stream turbulence level, $U_{n}$ is the local mean velocity and $b$ is a dimensionless power law constant. A general framework of grid design method based on these scalings is proposed and discussed. From the evolution of the shear stress coefficient $\unicode[STIX]{x1D70C}(x)$, integral length scale $L(x)$ and the dissipation coefficient $C_{\unicode[STIX]{x1D716}}(x)$, a simple turbulent kinetic energy model is proposed that describes the evolution of our grid generated turbulence field using one centreline measurement and one vertical profile of $u^{\prime }(y)$ at the beginning of the evolution. The results calculated from our model agree well with our measurements in the streamwise extent up to $x/H\approx 2.5$, where $H$ is the height of the grid, suggesting that it might be possible to design some shear flows with desired mean velocity and turbulence intensity profiles by designing the geometry of a passive grid.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.