Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-19T00:32:07.712Z Has data issue: false hasContentIssue false

Weakly non-linear waves in rotating fluids

Published online by Cambridge University Press:  29 March 2006

S. Leibovich
Affiliation:
Department of Thermal Engineering, Cornell University, Ithaca, New York

Abstract

The Korteweg–de Vries equation is shown to govern formation of solitary and cnoidal waves in rotating fluids confined in tubes. It is proved that the method must fail when the tube wall is moved to infinity, and the failure is corrected by singular perturbation procedures. The Korteweg–de Vries equation must then give way to an integro-differential equation. Also, critical stationary flows in tubes are considered with regard to Benjamin's vortex breakdown theories.

Type
Research Article
Copyright
© 1970 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benjamin, T. B. 1962 J. Fluid Mech. 14, 593629.
Benjamin, T. B. 1967a J. Fluid Mech. 29, 559592.
Benjamin, T. B. 1967b J. Fluid Mech. 28, 6584.
Benney, D. J. 1966 J. Math. Phys. 45, 5263.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
Gardner, C. S., Greene, J. M., Kruskal, M. D. & Miura, R. M. 1967 Phys. Rev. Letters, 19, 10951097.
Fraenkel, L. E. 1969 Proc. Camb. Phil. Soc. 65, 209231.
Harvey, J. K. 1962 J. Fluid Mech. 14, 585592.
Howard, N. & Gupta, H. 1962 J. Fluid Mech. 14, 463476.
Jeffreys, H. 1962 Asymptotic Approximations. Oxford University Press.
Korteweg, D. J. & de Vries, G. 1895 Phil. Mag. (5) 39, 422443.
Leibovich, S. 1969 Phys. Fluids, 12, 11241125.
Mei, C. C. 1966 J. Math. Phys. 35, 266288.
Miles, J. W. 1961 J. Fluid Mech. 10, 496508.
Ott, E. & Sudan, R. N. 1969 Damping of solitary waves. Phys. Fluids. (To be published.)Google Scholar
Pedley, T. J. 1969 J. Fluid Mech. 35, 97116.
Pritchard, W. 1970 J. Fluid Mech. 42, 6.
Squire, H. B. 1962 In Mizellaneen du Angewandten Mechanik. Berlin: Akademie.
Stoker, J. 1957 Water Waves. New York: Interscience.
Van Dyke, M. 1964 Perturbation Methods in Fluid Mechanics. New York: Academic.
Zabusky, N. J. 1968 Phys. Rev. 168, 124128.