Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T03:50:37.421Z Has data issue: false hasContentIssue false

Wavy liquid films in interaction with a confined laminar gas flow

Published online by Cambridge University Press:  28 March 2013

Georg F. Dietze*
Affiliation:
UPMC Universitaire Paris 06, Universitaire Paris-Sud, CNRS, Laboratoire FAST, Bâtiment 502, Campus Universitaire d’Orsay, Orsay, F-91405, France
Christian Ruyer-Quil
Affiliation:
UPMC Universitaire Paris 06, Universitaire Paris-Sud, CNRS, Laboratoire FAST, Bâtiment 502, Campus Universitaire d’Orsay, Orsay, F-91405, France
*
Email address for correspondence: [email protected]

Abstract

A low-dimensional model capturing the fully coupled dynamics of a wavy liquid film in interaction with a strongly confined laminar gas flow is introduced. It is based on the weighted residual integral boundary layer approach of Ruyer-Quil & Manneville (Eur. Phys. J. B, vol. 15, 2000, pp. 357–369) and accounts for viscous diffusion up to second order in the film parameter. The model is applied to study two scenarios: a horizontal pressure-driven water film/air flow and a gravity-driven liquid film interacting with a co- or counter-current air flow. In the horizontal case, interfacial viscous drag is weak and interfacial waves are primarily driven by pressure variations induced by the velocity difference between the two layers. This produces an extremely thin interfacial shear layer which is pinched at the main and capillary wave humps, creating several elongated vortices in the wave-fixed reference frame. In the capillary wave region preceding a large wave hump, flow separation occurs in the liquid in the form of a vortex transcending the liquid–gas interface. For the gravity-driven film, a twin vortex (in the wave-fixed reference frame) linked to the occurrence of rolling waves has been identified. It consists of the known liquid-side vortex within the wave hump and a previously unknown counter-rotating gas-side vortex, which are connected by the same interfacial stagnation points. At large counter-current gas velocities, interfacial waves on the falling liquid film are amplified and cause flooding of the channel in a noise-driven scenario, while this can be delayed by forcing regular waves at the most amplified linear wave frequency. Our model is shown to exactly capture the long-wave linear stability threshold for the general case of two-phase channel flow. Further, for the two considered scenarios, it predicts growth rates and celerity of linear waves in convincing agreement with Orr–Sommerfeld calculations. Finally, model calculations of nonlinear interfacial waves are in good agreement with film thickness and velocity measurements as well as streamline patterns in both phases obtained from direct numerical simulations.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alba, K., Laure, P. & Khayat, R. E. 2011 Transient two-layer thin-film flow inside a channel. Phys. Rev. E 84 (2), 114.Google Scholar
Alekseenko, S. V., Aktershev, S. P., Cherdantsev, A. V., Kharlamov, S. M. & Markovich, D. M. 2009 Primary instabilities of liquid film flow sheared by turbulent gas stream. Intl J. Multiphase Flow 35, 617627.Google Scholar
Alekseenko, S. V. & Nakoryakov, V. E. 1995 Instability of a liquid film moving under the effect of gravity and gas flow. Intl J. Heat Mass Transfer 38 (11), 21272134.Google Scholar
Alekseenko, S. V., Nakoryakov, V. E. & Pokusaev, B. G. 1994 Wave Flow of Liquid Films. Begell House.Google Scholar
Amaouche, M., Mehidi, N. & Amatousse, N. 2007 Linear stability of a two-layer film flow down an inclined channel: a second-order weighted residual approach. Phys. Fluids 19, 084106.Google Scholar
Azzopardi, B. J. 1997 Drops in annular two-phase flow. Intl J. Multiphase Flow 23 (Suppl.), 153.CrossRefGoogle Scholar
Barthelet, P., Charru, F. & Fabre, J. 1995 Experimental study of interfacial long waves in a two-layer shear flow. J. Fluid Mech. 303, 2353.Google Scholar
Benney, D. J. 1966 Long waves on liquid films. J. Math. Phys. 45, 150155.Google Scholar
Bontozoglou, V. 1998 A numerical study of interfacial transport to a gas-sheared wavy liquid. Intl J. Heat Mass Transfer 41 (15), 22972305.CrossRefGoogle Scholar
Boomkamp, P. A. M. & Miesen, R. H. M. 1996 Classification of instabilities in parallel two-phase flow. Intl J. Multiphase Flow 22, 6788.CrossRefGoogle Scholar
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modelling surface tension. J. Comput. Phys. 100, 335354.Google Scholar
Brauner, N., Moalem Maron, D. & Tovey, I. 1987 Characterization of the interfacial velocity in wavy thin films flow. Intl Commun. Heat Mass Transfer 14, 293302.Google Scholar
Brooke Benjamin, T. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554574.Google Scholar
Brooke Benjamin, T. 1959 Shearing flow over a wavy boundary. J. Fluid Mech. 6, 161205.CrossRefGoogle Scholar
Chang, H.-C. 1986 Nonlinear waves on liquid film surfaces. Flooding in a vertical tube. Chem. Engng Sci. 41 (10), 24632476.Google Scholar
Chang, H. C. & Demekhin, E. A. 2002 Complex Wave Dynamics on Thin Films Studies in Interface Science, vol. 14. Elsevier.Google Scholar
Chang, H. C., Demekhin, E. A. & Kalaidin, E. 1996a Simulation of noise-driven wave dynamics on a falling film. AIChE J. 42 (6), 15531568.Google Scholar
Chang, H. C., Demekhin, E. A., Kalaidin, E. & Ye, Y. 1996b Coarsening dynamics of falling-film solitary waves. Phys. Rev. E 54 (2), 14671477.Google Scholar
Charru, F. & Hinch, E. J. 2000 Phase diagram of interfacial instabilities in a two-layer couette flow and mechanism of the long-wave instability. J. Fluid Mech. 414, 195223.CrossRefGoogle Scholar
Demekhin, E. A. 1981 Nonlinear waves in a liquid film entrained by a turbulent gas stream. Fluid Dyn. 16, 188193.Google Scholar
Dietze, G. F., Al-Sibai, F. & Kneer, R. 2009 Experimental study of flow separation in laminar falling liquid films. J. Fluid Mech. 637, 73104.Google Scholar
Dietze, G. F., Leefken, A. & Kneer, R. 2008 Investigation of the backflow phenomenon in falling liquid films. J. Fluid Mech. 595, 435459.CrossRefGoogle Scholar
Doedel, E. J. 2008 AUTO07p: continuation and bifurcation software for ordinary differential equations. Montreal Concordia University.Google Scholar
Drosos, E. I. P., Paras, S. V. & Karabelas, A. J. 2006 Counter-current gas–liquid flow in a vertical narrow channel – liquid film characteristics and flooding phenomena. Intl J. Multiphase Flow 32, 5181.Google Scholar
Dukler, A. E. 1976 The role of waves in two phase flow: some new understandings. Chem. Engng Edu. 11 (3), 108117.Google Scholar
Floryan, J. M., Davis, S. H. & Kelly, R. E. 1987 Instabilities of a liquid film flowing down a slightly inclined plane. Phys. Fluids 30 (4), 983989.Google Scholar
Frank, A. M. 2008 Numerical simulation of gas driven waves in a liquid film. Phys. Fluids 20, 122102.Google Scholar
Frisk, D. P. & Davis, E. J. 1972 The enhancement of heat transfer by waves in stratified gas–liquid flow. Intl J. Heat Mass Transfer 15, 15371552.Google Scholar
Guguchkin, V. V., Demekhin, E. A., Kalugin, G. N., Markovich, E. E. & Pikin, V. G. 1979 Linear and nonlinear stability of combined plane-parallel flow of a film of liquid and gas. Fluid Dyn. 1, 3642.Google Scholar
Hanratty, T. J. & Hershman, A. 1961 Initiation of roll waves. AIChE J. 7 (3), 488497.CrossRefGoogle Scholar
Haroun, Y., Legendre, D. & Raynal, L. 2010 Direct numerical simulation of reactive absorption in gas–liquid flow on structured packing using interface capturing method. Chem. Engng Sci. 65, 351356.Google Scholar
Hinch, E. J. 1984 A note on the mechanism of the instability at the interface between two shearing fluids. J. Fluid Mech. 144, 463465.Google Scholar
Hirt, C. W. & Nichols, B. D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201225.Google Scholar
Hooper, A. P. 1985 Long-wave instability at the interface between two viscous fluids: thin layer effects. Phys. Fluids 28 (6), 16131618.Google Scholar
Hooper, A. P. & Boyd, W. G. C. 1983 Shear-flow instability at the interface between two viscous fluids. J. Fluid Mech. 128, 507528.Google Scholar
Jurman, L. A., Bruno, K. & McCready, J. 1989 Periodic and solitary waves on thin, horizontal, gas-sheared liquid films. Intl J. Multiphase Flow 15 (3), 371384.Google Scholar
Jurman, L. A. & McCready, M. J. 1989 Study of waves on thin liquid films sheared by turbulent gas flows. Phys. Fluids A 1 (3), 522536.Google Scholar
Kabov, O. A., Zaitsev, D. V., Cheverda, V. V. & Bar-Cohen, A. 2011 Evaporation and flow dynamics of thin, shear-driven liquid films in microgap channels. Exp. Therm. Fluid Sci. 35, 825831.Google Scholar
Kalliadasis, S., Ruyer-Quil, C., Scheid, B. & Velarde, M. G. 2012 Falling Liquid Films, Applied Mathematical Sciences, vol. 176. Springer.Google Scholar
Kapitza, P. L. 1948 Wave flow of thin layer of viscous fluid (in Russian). Zh. Eksp. Teor. Fiz. 18 (1), 328.Google Scholar
Lin, S. P. 1974 Finite amplitude side-band stability of a viscous film. J. Fluid Mech. 63, 417429.Google Scholar
Malamataris, N. A. & Balakotaiah, V. 2008 Flow structure underneath the large amplitude waves of a vertically falling film. AIChE J. 54 (7), 17251740.Google Scholar
Malamataris, N. A., Vlachogiannis, M. & Bontozoglou, V. 2002 Solitary waves on inclined films: flow structure and binary interactions. Phys. Fluids 14 (3), 10821094.Google Scholar
Matar, O. K., Lawrence, C. J. & Sisoev, G. M. 2007 Interfacial dynamics in pressure-driven two-layer laminar channel flow with high viscosity ratios. Phys. Rev. E 75, 056314.Google Scholar
McCready, M. J. & Chang, H.-C. 1994 Formation of large disturbances on sheared and falling liquid films. Chem. Engng Commun. 141–142 (1), 347358.Google Scholar
Miesen, R. & Boersma, B. J. 1995 Hydrodynamic stability of a sheared liquid film. J. Fluid Mech. 301, 175202.CrossRefGoogle Scholar
Miles, J. W. 1957 On the generation of surface waves by shear flows. J. Fluid Mech. 3, 185204.Google Scholar
Miyara, A. 1999 Numerical analysis on flow dynamics and heat transfer of falling liquid films with interfacial waves. Heat Mass Transfer 35, 298306.Google Scholar
Náraigh, L. Ó., Spelt, P. D. M., Matar, O. K. & Zaki, T. A. 2011 Interfacial instability in turbulent flow over a liquid film in a channel. Intl J. Multiphase Flow 37, 812830.Google Scholar
Nave, J.-C. 2004 Direct numerical simulation of liquid films. PhD thesis, University of California.Google Scholar
Njifenju, K. 2010 Gouttes et films liquides en aérodynamique automobile. PhD thesis, Université Pierre et Marie Curie.Google Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228, 58385866.Google Scholar
Pozrikidis, C. 1998 Gravity-driven creeping flow of two adjacent layers through a channel and down a plane wall. J. Fluid Mech. 371, 345376.Google Scholar
Prosperetti, A. & Tryggvason, G. (Eds) 2007 Computational Methods for Multiphase Flow. Cambridge University Press.Google Scholar
Rastaturin, A., Demekhin, E. & Kalaidin, E. 2006 Optimal regimes of heat-mass transfer in a falling film. J. Non-Equilib. Thermodyn. 31, 110.Google Scholar
Renardy, Y. 1985 Instability at the interface between two shearing fluids in a channel. Phys. Fluids 28 (12), 34413443.Google Scholar
Roberts, R. M. & Chang, H.-C. 2000 Wave-enhanced interfacial transfer. Chem. Engng Sci. 55, 11271141.Google Scholar
Rusche, H. 2002 Computational fluid dynamics of dispersed two-phase flows at high phase fractions. PhD thesis, Imperial College, University of London.Google Scholar
Ruyer-Quil, C. & Manneville, P. 1998 Modeling film flows down inclined planes. Eur. Phys. J. B 6 (2), 277292.CrossRefGoogle Scholar
Ruyer-Quil, C. & Manneville, P. 2000 Improved modeling of flows down inclined planes. Eur. Phys. J. B 15 (2), 357369.Google Scholar
Ruyer-Quil, C. & Manneville, P. 2002 Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations. Phys. Fluids 14 (1), 170183.Google Scholar
Sahu, K. C., Valluri, P., Spelt, P. D. M. & Matar, O. K. 2007 Linear instability of pressure-driven channel flow of a Newtonian and a Herschel–Bulkley fluid. Phys. Fluids 19, 122101.Google Scholar
Sahu, K. C., Valluri, P., Spelt, P. D. M. & Matar, O. K. 2008 Erratum: linear instability of pressure-driven channel flow of a Newtonian and a Herschel–Bulkley fluid [Phys. Fluids 19, 122101 (2007)]. Phys. Fluids 20, 109902.Google Scholar
Samanta, A., Ruyer-Quil, C. & Goyeau, B. 2011 A falling film down a slippery inclined plane. J. Fluid Mech. 684, 353383.Google Scholar
Samanta, A., Ruyer-Quil, C. & Goyeau, B. 2013 A falling film on a porous medium. J. Fluid Mech. 716, 414444.Google Scholar
Scardovelli, R. & Zaleski, S. 1999 Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31, 567603.Google Scholar
Scheid, B., Ruyer-Quil, C. & Manneville, P. 2006 Wave patterns in film flows: modeling and three-dimensional waves. J. Fluid Mech. 562, 183222.Google Scholar
Shearer, C. J. & Davidson, J. F. 1965 The investigation of a standing wave due to gas blowing upwards over a liquid film; its relation to flooding in wetted-wall columns. J. Fluid Mech. 22 (02), 321335.Google Scholar
Shkadov, V. Ya. 1967 Wave flow regimes of a thin layer of viscous fluid subject to gravity. Fluid Dyn. 2 (1), 2934.Google Scholar
Sisoev, G. M., Matar, O. K. & Lawrence, C. J. 2009 Wave regimes in two-layer microchannel flow. Chem. Engng Sci. 64, 30943102.CrossRefGoogle Scholar
Thorsness, C. B., Morrisroe, P. E. & Hanratty, T. J. 1978 A comparison of linear theory with measurements of the variation of shear stress along a solid wave. Chem. Engng Sci. 33, 579592.Google Scholar
Tilley, B. S., Davis, S. H. & Bankoff, S. G. 1994a Linear stability theory of two-layer fluid flow in an inclined channel. Phys. Fluids 6 (12), 39063922.Google Scholar
Tilley, B. S., Davis, S. H. & Bankoff, S. G. 1994b Nonlinear long-wave stability of superposed fluids in an inclined channel. J. Fluid Mech. 277, 5583.Google Scholar
Trifonov, Y. Y. 2010 Counter-current gas–liquid wavy film flow between the vertical plates analyzed using the Navier–Stokes equations. AIChE J. 56 (8), 19751987.Google Scholar
Tseluiko, D. & Kalliadasis, S. 2011 Nonlinear waves in counter-current gas–liquid film flow. J. Fluid Mech. 673, 1959.Google Scholar
Valluri, P., Matar, O. K., Hewitt, G. F. & Mendes, M. A. 2005 Thin film flow over structured packings at moderate Reynolds numbers. Chem. Engng Sci. 60, 19651975.Google Scholar
Valluri, P., Náraigh, L. Ó., Ding, H. & Spelt, P. D. M. 2010 Linear and nonlinear spatio-temporal instability in laminar two-layer flows. J. Fluid Mech. 656, 458480.Google Scholar
Vlachomitrou, M. & Pelekasis, N. 2009 Nonlinear ingteraction between a boundary layer and a liquid film. J. Fluid Mech. 638, 199242.Google Scholar
Vlachomitrou, M. & Pelekasis, N. 2010 Short- to long-wave resonance and soliton formation in boundary-layer interaction with a liquid film. J. Fluid Mech. 660, 162196.Google Scholar
Vlachos, N. A., Paras, S. V., Mouza, A. A. & Karabelas, A. J. 2001 Visual observations of flooding in narrow rectangular channels. Intl J. Multiphase Flow 27, 14151430.CrossRefGoogle Scholar
Yiantsios, S. G. 2006 Plane Poiseuille flow of a sedimenting suspension of Brownian hard-sphere particles: hydrodynamic stability and direct numerical simulations. Phys. Fluids 18, 054103.Google Scholar
Yiantsios, S. G. & Higgins, B. G. 1988a Linear stability of plane poiseuille flow of two superposed fluids. Phys. Fluids 31 (11), 32253238.Google Scholar
Yiantsios, S. G. & Higgins, B. G. 1988b Numerical solution of eigenvalue problems using the compound matrix method. J. Comput. Phys. 74, 2540.Google Scholar
Yih, C.-S. 1967 Instability due to viscosity stratification. J. Fluid Mech. 27 (2), 337352.Google Scholar
Zakaria, K. 2012 Long interfacial waves inside an inclined permeable channel. Intl J. Non-Linear Mech. 47, 4248.Google Scholar
Zapke, A. & Kröger, D. G. 2000 Countercurrent gas–liquid flow in inclined and vertical ducts – II: the validity of the froude-ohnesorge number correlation for flooding. Intl J. Multiphase Flow 26, 14571468.Google Scholar
Zhang, J., Miksis, M. J., Bankoff, S. G. & Tryggvason, G. 2002 Nonlinear dynamics of an interface in an inclined channel. Phys. Fluids 14 (6), 18771885.Google Scholar