Hostname: page-component-f554764f5-c4bhq Total loading time: 0 Render date: 2025-04-20T07:47:18.575Z Has data issue: false hasContentIssue false

Wavelet-based resolvent analysis of non-stationary flows

Published online by Cambridge University Press:  14 November 2024

Eric Ballouz*
Affiliation:
Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA 91125, USA
Barbara Lopez-Doriga
Affiliation:
Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
Scott T.M. Dawson
Affiliation:
Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
H. Jane Bae
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
*
Email address for correspondence: [email protected]

Abstract

This work introduces a formulation of resolvent analysis that uses wavelet transforms rather than Fourier transforms in time. Under this formulation, resolvent analysis may extend to turbulent flows with non-stationary mean states. The optimal resolvent modes are augmented with a temporal dimension and are able to encode the time-transient trajectories that are most amplified by the linearised Navier–Stokes equations. We first show that the wavelet- and Fourier-based resolvent analyses give equivalent results for statistically stationary flow by applying them to turbulent channel flow. We then use wavelet-based resolvent analysis to study the transient growth mechanism in the near-wall region of a turbulent channel flow by windowing the resolvent operator in time and frequency. The computed principal resolvent response mode, i.e. the velocity field optimally amplified by the linearised dynamics of the flow, exhibits characteristics of the Orr mechanism, which supports the claim that this mechanism is key to linear transient energy growth. We also apply this method to non-stationary parallel shear flows such as an oscillating boundary layer, and three-dimensional channel flow in which a sudden spanwise pressure gradient perturbs a fully developed turbulent channel flow. In both cases, wavelet-based resolvent analysis yields modes that are sensitive to the changing mean profile of the flow. For the oscillating boundary layer, wavelet-based resolvent analysis produces oscillating principal forcing and response modes that peak at times and wall-normal locations associated with high turbulent activity. For the turbulent channel flow under a sudden spanwise pressure gradient, the resolvent modes gradually realign themselves with the mean flow as the latter deviates. Wavelet-based resolvent analysis thus captures the changes in the transient linear growth mechanisms caused by a time-varying turbulent mean profile.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abreu, L.I., Cavalieri, A.V.G., Schlatter, P., Vinuesa, R. & Henningson, D.S. 2020 Spectral proper orthogonal decomposition and resolvent analysis of near-wall coherent structures in turbulent pipe flows. J. Fluid Mech. 900, A11.CrossRefGoogle Scholar
Adrian, R.J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19 (4), 041301.CrossRefGoogle Scholar
Ahmed, M.A., Bae, H.J., Thompson, A.F. & McKeon, B.J. 2021 Resolvent analysis of stratification effects on wall-bounded shear flows. Phys. Rev. Fluids 6, 084804.CrossRefGoogle Scholar
Akhavan, R., Kamm, R.D. & Shapiro, A.H. 1991 An investigation of transition to turbulence in bounded oscillatory Stokes flows. Part 1. Experiments. J. Fluid Mech. 225, 395422.CrossRefGoogle Scholar
Arun, R., Bae, H.J. & McKeon, B.J. 2023 Towards real-time reconstruction of velocity fluctuations in turbulent channel flow. Phys. Rev. Fluids 8 (6), 064612.CrossRefGoogle Scholar
Bae, H.J., Dawson, S.T.M. & McKeon, B.J. 2020 a Resolvent-based study of compressibility effects on supersonic turbulent boundary layers. J. Fluid Mech. 883, A29.CrossRefGoogle Scholar
Bae, H.J., Dawson, S.T.M. & McKeon, B.J. 2020 b Studying the effect of wall cooling in supersonic boundary layer flow using resolvent analysis. In AIAA Scitech 2020 Forum, p. 0575. AIAA (American Institute of Aeronautics and Astronautics).CrossRefGoogle Scholar
Bae, H.J. & Lee, M. 2021 Life cycle of streaks in the buffer layer of wall-bounded turbulence. Phys. Rev. Fluids 6 (6), 064603.CrossRefGoogle Scholar
Bae, H.J., Lozano-Durán, A., Bose, S.T. & Moin, P. 2018 Turbulence intensities in large-eddy simulation of wall-bounded flows. Phys. Rev. Fluids 3, 014610.CrossRefGoogle ScholarPubMed
Bae, H.J., Lozano-Durán, A., Bose, S.T. & Moin, P. 2019 Dynamic slip wall model for large-eddy simulation. J. Fluid Mech. 859, 400432.CrossRefGoogle ScholarPubMed
Bae, H.J., Lozano-Durán, A. & McKeon, B.J. 2021 Nonlinear mechanism of the self-sustaining process in the buffer and logarithmic layer of wall-bounded flows. J. Fluid Mech. 914, A3.CrossRefGoogle Scholar
Bakewell, H.P., Jr. & s Lumley, J.L. 1967 Viscous sublayer and adjacent wall region in turbulent pipe flow. Phys. Fluids 10 (9), 18801889.CrossRefGoogle Scholar
Ballouz, E., Dawson, S.T.M. & Bae, H.J. 2024 Transient growth of wavelet-based resolvent modes in the buffer layer of wall-bounded turbulence. J. Phys.: Conf. Ser. 2753, 012002.Google Scholar
Ballouz, E., López-Doriga, B., Dawson, S.T.M. & Bae, H.J. 2023 Wavelet-based resolvent analysis for statistically-stationary and temporally-evolving flows. In AIAA SCITECH 2023 Forum, p. 0676. AIAA (American Institute of Aeronautics and Astronautics).CrossRefGoogle Scholar
Barthel, B. & Sapsis, T. 2023 Harnessing instability mechanisms in airfoil flow for data-driven forecasting of extreme events. AIAA 61 (11), 48794896.CrossRefGoogle Scholar
Beneddine, S., Yegavian, R., Sipp, D. & Leclaire, B. 2017 Unsteady flow dynamics reconstruction from mean flow and point sensors: an experimental study. J. Fluid Mech. 824, 174201.CrossRefGoogle Scholar
Berkooz, G., Holmes, P. & Lumley, J.L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539575.CrossRefGoogle Scholar
Blackwelder, R.F. & Eckelmann, H. 1979 Streamwise vortices associated with the bursting phenomenon. J. Fluid Mech. 94 (3), 577594.CrossRefGoogle Scholar
Blondeaux, P. & Vittori, G 1994 Wall imperfections as a triggering mechanism for Stokes-layer transition. J. Fluid Mech. 264, 107135.CrossRefGoogle Scholar
Borée, J 2003 Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows. Exp. Fluids 35 (2), 188192.CrossRefGoogle Scholar
Butler, K.M. & Farrell, B.F. 1993 Optimal perturbations and streak spacing in wall-bounded turbulent shear flow. Phys. Fluids A 5 (3), 774777.CrossRefGoogle Scholar
Carstensen, S., Sumer, B.M. & Fredsøe, J. 2010 Coherent structures in wave boundary layers. Part 1. Oscillatory motion. J. Fluid Mech. 646, 169206.CrossRefGoogle Scholar
Chernyshenko, S.I. & Baig, M.F. 2005 The mechanism of streak formation in near-wall turbulence. J. Fluid Mech. 544, 99131.CrossRefGoogle Scholar
Costamagna, P., Vittori, G. & Blondeaux, P. 2003 Coherent structures in oscillatory boundary layers. J. Fluid Mech. 474, 133.CrossRefGoogle Scholar
Del Alamo, J.C. & Jimenez, J. 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.CrossRefGoogle Scholar
Drineas, P. & Mahoney, M.W. 2016 RandNLA: randomized numerical linear algebra. Commun. ACM 59 (6), 8090.CrossRefGoogle Scholar
Encinar, M.P. & Jiménez, J. 2020 Momentum transfer by linearised eddies in turbulent channel flows. J. Fluid Mech. 895, A23.CrossRefGoogle Scholar
Farghadan, A., Jung, J., Bhagwat, R. & Towne, A. 2024 Efficient harmonic resolvent analysis via time stepping. Theor. Comput. Fluid Dyn. 38, 331353.CrossRefGoogle Scholar
Farrell, B.F., Gayme, D.F. & Ioannou, P.J. 2017 A statistical state dynamics approach to wall turbulence. Phil. Trans. R. Soc. Lond. A 375 (2089), 20160081.Google ScholarPubMed
Farrell, B.F. & Ioannou, P.J. 1998 Perturbation structure and spectra in turbulent channel flow. Theor. Comput. Fluid Dyn. 11 (3), 237250.CrossRefGoogle Scholar
Flores, O. & Jiménez, J. 2010 Hierarchy of minimal flow units in the logarithmic layer. Phys. Fluids 22 (7), 071704.CrossRefGoogle Scholar
Floryan, D. & Graham, M.D. 2021 Discovering multiscale and self-similar structure with data-driven wavelets. Proc. Natl Acad. Sci. USA 118 (1), e2021299118.CrossRefGoogle ScholarPubMed
Gómez, F., Blackburn, H.M., Rudman, F., Sharma, A.S. & McKeon, B.J. 2016 A reduced-order model of three-dimensional unsteady flow in a cavity based on the resolvent operator. J. Fluid Mech. 798, R2.CrossRefGoogle Scholar
Halko, N., Martinsson, P.-G. & Tropp, J.A. 2011 Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53 (2), 217288.CrossRefGoogle Scholar
Hamilton, J.M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.CrossRefGoogle Scholar
Hino, M., Sawamoto, M. & Takasu, S. 1976 Experiments on transition to turbulence in an oscillatory pipe flow. J. Fluid Mech. 75 (2), 193207.CrossRefGoogle Scholar
Hoyas, S. & Jiménez, J. 2006 Scaling of velocity fluctuations in turbulent channels up to $Re_\tau = 2000$. Phys. Fluids 18, 011702.CrossRefGoogle Scholar
Hoyas, S. & Jiménez, J. 2008 Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Phys. Fluids 20 (10), 101511.CrossRefGoogle Scholar
Hwang, Y. & Bengana, Y. 2016 Self-sustaining process of minimal attached eddies in turbulent channel flow. J. Fluid Mech. 795, 708738.CrossRefGoogle Scholar
Hwang, Y. & Cossu, C. 2010 Self-sustained process at large scales in turbulent channel flow. Phys. Rev. Lett. 105 (4), 044505.CrossRefGoogle ScholarPubMed
Illingworth, S.J., Monty, J.P. & Marusic, I. 2018 Estimating large-scale structures in wall turbulence using linear models. J. Fluid Mech. 842, 146162.CrossRefGoogle Scholar
Jensen, B.L., Sumer, B.M. & Fredsøe, J. 1989 Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech. 206, 265297.CrossRefGoogle Scholar
Jeun, J., Nichols, J.W. & Jovanović, M.R. 2016 Input-output analysis of high-speed axisymmetric isothermal jet noise. Phys. Fluids 28 (4), 047101.CrossRefGoogle Scholar
Jiménez, J. 2013 How linear is wall-bounded turbulence? Phys. Fluids 25, 110814.CrossRefGoogle Scholar
Jiménez, J. 2015 Direct detection of linearized bursts in turbulence. Phys. Fluids 27 (6), 065102.CrossRefGoogle Scholar
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.CrossRefGoogle Scholar
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.CrossRefGoogle Scholar
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.CrossRefGoogle Scholar
Johansson, A.V., Her, J.-Y. & Haritonidis, J.H. 1987 On the generation of high-amplitude wall-pressure peaks in turbulent boundary layers and spots. J. Fluid Mech. 175, 119142.CrossRefGoogle Scholar
Jovanovic, M.R. 2004 Modeling, analysis, and control of spatially distributed systems. University of California at Santa Barbara, Dept. of Mechanical Engineering.Google Scholar
Jovanović, M.R. & Bamieh, B. 2005 Componentwise energy amplification in channel flows. J. Fluid Mech. 534, 145183.CrossRefGoogle Scholar
Kim, H.T., Kline, S.J. & Reynolds, W.C. 1971 The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech. 50 (1), 133160.CrossRefGoogle Scholar
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308323.CrossRefGoogle Scholar
Klebanoff, P.S., Tidstrom, K.D. & Sargent, L.M. 1962 The three-dimensional nature of boundary-layer instability. J. Fluid Mech. 12 (1), 134.CrossRefGoogle Scholar
Kline, S.J., Reynolds, W.C., Schraub, F.A. & Runstadler, P.W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (4), 741773.CrossRefGoogle Scholar
Kojima, Y., Yeh, C., Taira, K. & Kameda, M. 2020 Resolvent analysis on the origin of two-dimensional transonic buffet. J. Fluid Mech. 885, R1.CrossRefGoogle Scholar
Landahl, M.T 1975 Wave breakdown and turbulence. SIAM J. Appl. Math 28 (4), 735756.CrossRefGoogle Scholar
Landahl, M.T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98 (2), 243251.CrossRefGoogle Scholar
Lewalle, J. 1993 Wavelet transforms of the Navier–Stokes equations and the generalized dimensions of turbulence. Appl. Sci. Res. 51 (1-2), 109113.CrossRefGoogle Scholar
López-Doriga, B., Ballouz, E., Bae, H.J. & Dawson, S.T.M. 2023 A sparsity-promoting resolvent analysis for the identification of spatiotemporally-localized amplification mechanisms. In AIAA SCITECH 2023 Forum, p. 0677. AIAA (American Institute of Aeronautics and Astronautics).CrossRefGoogle Scholar
López-Doriga, B., Ballouz, E., Bae, H.J. & Dawson, S.T.M. 2024 Sparse space-time resolvent analysis for statistically stationary and time-varying flows. J. Fluid Mech. (accepted).Google Scholar
Lozano-Durán, A. & Bae, H.J. 2019 Characteristic scales of Townsend's wall-attached eddies. J. Fluid Mech. 868, 698725.CrossRefGoogle ScholarPubMed
Lozano-Durán, A., Constantinou, N.C., Nikolaidis, M.-A. & Karp, M. 2021 Cause-and-effect of linear mechanisms sustaining wall turbulence. J. Fluid Mech. 914, A8.CrossRefGoogle Scholar
Lozano-Durán, A., Giometto, M.G., Park, G.I. & Moin, P. 2021 Non-equlibrium three-dimensional boundary layers at moderate Reynolds numbers. J. Fluid Mech. 883, A20.CrossRefGoogle Scholar
Lozano-Durán, A., Hack, M.J.P. & Moin, P. 2018 Modeling boundary-layer transition in direct and large-eddy simulations using parabolized stability equations. Phys. Rev. Fluids 3, 023901.CrossRefGoogle ScholarPubMed
Luhar, M., Sharma, A.S. & McKeon, B.J. 2014 Opposition control within the resolvent analysis framework. J. Fluid Mech. 749, 597626.CrossRefGoogle Scholar
Lumley, J.L. 1967 The structure of inhomogeneous turbulent flows. In Atmospheric Turbulence and Radio Wave Propagation (ed. A.M. Yaglom & V.I. Tatarsky), pp. 166–178. Nauka.Google Scholar
Lumley, J.L. 2007 Stochastic Tools in Turbulence. Courier Corporation.Google Scholar
Mallat, S. 2001 A Wavelet Tour of Signal Processing. Academic Press.Google Scholar
Martini, E., Cavalieri, A.V.G., Jordan, P., Towne, A. & Lesshafft, L. 2020 Resolvent-based optimal estimation of transitional and turbulent flows. J. Fluid Mech. 900, A2.CrossRefGoogle Scholar
Martini, E., Rodríguez, D., Towne, A. & Cavalieri, A.V.G. 2021 Efficient computation of global resolvent modes. J. Fluid Mech. 919, A3.CrossRefGoogle Scholar
McKeon, B.J. 2017 The engine behind (wall) turbulence: perspectives on scale interactions. J. Fluid Mech. 817, P1.CrossRefGoogle Scholar
McKeon, B.J. 2019 Self-similar hierarchies and attached eddies. Phys. Rev. Fluids 4 (8), 082601.CrossRefGoogle Scholar
McKeon, B.J. & Sharma, A.S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.CrossRefGoogle Scholar
Meneveau, C. 1991 Analysis of turbulence in the orthonormal wavelet representation. J. Fluid Mech. 232, 469520.CrossRefGoogle Scholar
Meyer, Y. 1992 Wavelets and Operators: Volume 1. Cambridge University Press.Google Scholar
Mezić, I. 2013 Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech. 45, 357378.CrossRefGoogle Scholar
Moarref, R., Sharma, A.S., Tropp, J.A. & McKeon, B.J. 2013 Model-based scaling of the streamwise energy density in high-Reynolds-number turbulent channels. J. Fluid Mech. 734, 275316.CrossRefGoogle Scholar
Moin, P., Shih, T.-H., Driver, D.M. & Mansour, N.N. 1990 Direct numerical simulation of a three-dimensional turbulent boundary layer. Phys. Fluids 2 (10), 18461853.CrossRefGoogle Scholar
Musco, C. & Musco, C. 2015 Randomized block Krylov methods for stronger and faster approximate singular value decomposition. Adv. Neural Inform. Proc. Syst. 28, 13961404.Google Scholar
Najmi, A.-H. 2012 Wavelets: A Concise Guide. The Johns Hopkins University Press.CrossRefGoogle Scholar
Orlandi, P. 2000 Fluid Flow Phenomena: A Numerical Toolkit. Springer Science and Business Media.CrossRefGoogle Scholar
Orr, W.M. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part 1. A perfect liquid. Proc. R. Irish Acad. A 27, 968.Google Scholar
Ozdemir, C.E., Hsu, T. -J. & Balachandar, S. 2014 Direct numerical simulations of transition and turbulence in smooth-walled Stokes boundary layer. Phys. Fluids 26 (4), 045108.CrossRefGoogle Scholar
Padovan, A., Otto, S.E. & Rowley, C.W. 2020 Analysis of amplification mechanisms and cross-frequency interactions in nonlinear flows via the harmonic resolvent. J. Fluid Mech. 900, A14.CrossRefGoogle Scholar
Panton, R.L. 2001 Overview of the self-sustaining mechanisms of wall turbulence. Prog. Aerosp. Sci. 37 (4), 341383.CrossRefGoogle Scholar
Pickering, E., Rigas, G., Nogueira, P.A.S., Cavalieri, A.V.G., Schmidt, O.T. & Colonius, T. 2020 Lift-up, Kelvin–Helmholtz and Orr mechanisms in turbulent jets. J. Fluid Mech. 896, A2.CrossRefGoogle Scholar
Pujals, G., García-Villalba, M., Cossu, C. & Depardon, S. 2009 A note on optimal transient growth in turbulent channel flows. Phys. Fluids 21 (1), 015109.CrossRefGoogle Scholar
Ren, J., Mao, X. & Fu, S. 2021 Image-based flow decomposition using empirical wavelet transform. J. Fluid Mech. 906, A22.CrossRefGoogle Scholar
Ribeiro, J.H.M., Yeh, C. -A. & Taira, K. 2020 Randomized resolvent analysis. Phys. Rev. Fluids 5 (3), 033902.CrossRefGoogle Scholar
Ribeiro, J.H.M., Yeh, C. -A. & Taira, K. 2023 Triglobal resolvent analysis of swept-wing wakes. J. Fluid Mech. 954, A42.CrossRefGoogle Scholar
Robinson, S.K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1), 601639.CrossRefGoogle Scholar
Sarpkaya, T. 1993 Coherent structures in oscillatory boundary layers. J. Fluid Mech. 253, 105140.CrossRefGoogle Scholar
Schmid, P.J., Henningson, D.S. & Jankowski, D.F. 2002 Stability and transition in shear flows, Applied mathematical sciences, vol. 142. Appl. Mech. Rev. 55 (3), B57B59.CrossRefGoogle Scholar
Schmidt, O.T., Towne, A., Rigas, G., Colonius, T. & Brès, G.A. 2018 Spectral analysis of jet turbulence. J. Fluid Mech. 855, 953982.CrossRefGoogle Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.CrossRefGoogle Scholar
Simon, H.D. & Zha, H. 2000 Low-rank matrix approximation using the Lanczos bidiagonalization process with applications. SIAM J. Sci. Comput. 21 (6), 22572274.CrossRefGoogle Scholar
Smith, C.R. & Metzler, S.P. 1983 The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech. 129, 2754.CrossRefGoogle Scholar
Smits, A.J., McKeon, B.J. & Marusic, I. 2011 High–Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.CrossRefGoogle Scholar
Spalart, P.R. & Baldwin, B.S. 1989 Direct simulation of a turbulent oscillating boundary layer. In Turbulent Shear Flows 6 (ed. J.-C. André, J. Cousteix, F. Durst, B. Launder, F. Schmidt & J. Whitelaw), pp. 417–440. Springer.CrossRefGoogle Scholar
Symon, S., Madhusudanan, A., Illingworth, S.J. & Marusic, I. 2023 Use of eddy viscosity in resolvent analysis of turbulent channel flow. Phys. Rev. Fluids 8 (6), 064601.CrossRefGoogle Scholar
Tissot, G., Cavalieri, A.V.G. & Mémin, E. 2021 Stochastic linear modes in a turbulent channel flow. J. Fluid Mech. 912, A51.CrossRefGoogle Scholar
Tissot, G., Zhang, M., Lajús, F.C., Cavalieri, A.V.G. & Jordan, P. 2017 Sensitivity of wavepackets in jets to nonlinear effects: the role of the critical layer. J. Fluid Mech. 811, 95137.CrossRefGoogle Scholar
Towne, A., Lozano-Durán, A. & Yang, X.I.A. 2020 Resolvent-based estimation of space–time flow statistics. J. Fluid Mech. 883, A17.CrossRefGoogle Scholar
Towne, A., Rigas, G., Kamal, O., Pickering, E. & Colonius, T. 2022 Efficient global resolvent analysis via the one-way Navier–Stokes equations. J. Fluid Mech. 948, A9.CrossRefGoogle Scholar
Tropp, J.A., Yurtsever, A., Udell, M. & Cevher, V. 2017 Practical sketching algorithms for low-rank matrix approximation. SIAM J. Matrix Anal. Applics. 38 (4), 14541485.CrossRefGoogle Scholar
Verzicco, R. & Vittori, G. 1996 Direct simulation of transition in Stokes boundary layers. Phys. Fluids 8 (6), 13411343.CrossRefGoogle Scholar
Vittori, G. & Verzicco, R. 1998 Direct simulation of transition in an oscillatory boundary layer. J. Fluid Mech. 371, 207232.CrossRefGoogle Scholar
Von Kerczek, C. & Davis, S.H. 1974 Linear stability theory of oscillatory Stokes layers. J. Fluid Mech. 62 (4), 753773.CrossRefGoogle Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883900.CrossRefGoogle Scholar
Wray, A.A. 1990 Minimal-storage time advancement schemes for spectral methods. Tech. Rep. NASA Ames Research Center.Google Scholar
Yeh, C.-A., Benton, S.I., Taira, K. & Garmann, D.J. 2020 Resolvent analysis of an airfoil laminar separation bubble at ${R}e = 500\,000$. Phys. Rev. Fluids 5 (8), 083906.CrossRefGoogle Scholar
Yeh, C.-A. & Taira, K. 2019 Resolvent-analysis-based design of airfoil separation control. J. Fluid Mech. 867, 572610.CrossRefGoogle Scholar