Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T16:19:22.406Z Has data issue: false hasContentIssue false

Wave propagation in a thin-walled liquid-filled initially stressed tube

Published online by Cambridge University Press:  20 April 2006

G. D. C. Kuiken
Affiliation:
Laboratory for Aero- and Hydrodynamics, Department of Mechanical Engineering, Delft University of Technology, The Netherlands

Abstract

Wave propagation through a thin-walled cylindrical orthotropic viscoelastic initially stressed tube filled with a Newtonian fluid is discussed. Special attention is drawn to the influence of the initial stretch on the wave propagation. It is shown that initial stretching of real arteries enhances the propagation of blood pressure pulses in mammalian arteries. The dispersion equation for the initial-value problem of a semi-infinite tube is also derived. It is shown that the speed of propagation and the attenuation vary with the distance from the support. The results obtained for the axial wave mode provide an explanation for the experimental observations, which is not possible with the results obtained for the infinite tube.

Type
Research Article
Copyright
© 1984 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anliker, M., Moritz, W. E. & Ogden, E. 1968 Transmission characteristics of axial waves in blood vessels. J. Biomech. 1, 235246.Google Scholar
Atabek, H. B. 1968 Wave propagation through a viscous fluid contained in a tethered, initially stressed, orthotropic elastic tube. Biophys. J. 8, 626649.Google Scholar
Atabek, H. B. & Lew, H. S. 1966 Wave propagation through a viscous incompressible fluid contained in an initially stressed elastic tube. Biophys. J. 6, 481503.Google Scholar
Beasley, C. O. & Meier, H. K. 1974 Subroutine Cauchy: complex roots of a function using a Cauchy integral technique. Oak Ridge, Tennessee, Maths Note no. 37.Google Scholar
Citters, R. L. van 1960 Longitudinal waves in the walls of fluid-filled elastic tubes. Circ. Res. 8, 11451148.Google Scholar
Flaud, P., Geiger, D., Oddou, C. & Quémada, D. 1974 Écoulements pulsés dans les tuyaux viscoélastiques. Application à l'étude de la circulation sanguine. J. Phys. (Paris) 35, 869882.Google Scholar
Flaud, P., Geiger, D., Oddou, C. & Quémada, D. 1975 Experimental study of wave propagation through viscous fluid contained in viscoelastic cylindrical tube under static stresses. Biorheol. 12, 347354.Google Scholar
Flügge, W. 1973 Stresses in Shells, 2nd edn. Springer.
Giri, D. V. & Baum, C. E. 1978 Application of Cauchy's residue theorem in evaluating the poles and zero's of complex meromorphic functions and apposite computer programs. Berkeley Maths Note no. 55.Google Scholar
Groot, S. R. de, & Mazur, P. 1962 Non-Equilibrium Thermodynamics. North-Holland.
Helmholtz, H. von 1863 Verhandlungen der Naturhistorisch-Medizinischen Vereins zu Heidelberg, Band III, p. 16.
Iberall, A. S. 1950 Attenuation of oscillatory pressures in instrument lines. US Dept Commerce, Res. Paper RP 2115; J. Res. Natl Bur. Stand. 45, 85–108.Google Scholar
Kerris, W. 1939 Einfluss der Rohrleitung bei der Messung periodisch schwankender Drücke. Zentralblatt für Wissenschaftliches Berichtwesen, Berlin-Adlerhof F.B. 1140.
Kirchoff, G. 1868 Ueber den Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung. Poggendorfer Ann. 134, 177193.Google Scholar
Koiter, W. T. 1967 General equations of elastic stability for thin shells. In Proc. Symp. on the Theory of Shells to honour L. H. Donnell, 4–6 April 1966, Houston, Texas, pp. 187227. University of Houston.
Korteweg, D. J. 1878 Über die Fortpflanzungesgeschwindigkeit des Schalles in elastischen Röhren. Ann. Phys. Chem., Neue Folge 5, 525542.Google Scholar
Kuiken, G. D. C. 1984 Approximate dispersion equations for thin wall liquid filled tubes. Appl. Sci. Res. 41, 3753.Google Scholar
Lighthill, M. J. 1970 Possible time-lag of mechanical origin following relief of venous congestion. Appendix to Caro, G. G., Foley, T. H. & Sudlow, M. F. ‘Forearm vasodilatation following release of venous congestion’. J. Physiol. 207, 257269.Google Scholar
McCune, J. E. 1966 Exact inversion of dispersion relations. Phys. Fluids 9, 20822084.Google Scholar
McDonald, D. A. 1974 Blood Flow in Arteries, 2nd edn. Arnold.
Maxwell, J. A. & Anliker, M. 1968 The dissipation and dispersion of small waves in arteries and veins with viscoelastic wall properties. Biophys. J. 8, 920950.Google Scholar
Moens, A. I. 1878 Die. Pulskurve. Brill, Leiden.
Moodie, T. B., Haddow, J. B. & Tait, R. J. 1982 Wave propagation in a thin walled fluid filled viscoelastic tube. Acta Mech. 42, 123134.Google Scholar
Patel, D. J. & Vaishnav, R. N. 1972 The rheology of large blood vessels. In Cardiovascular Fluid Dynamics (ed. D. H. Bergel), ch. 11. Academic.
Pedley, T. J. 1980 The Fluid Mechanics of Large Blood Vessels. Cambridge University Press.
Rayleigh, Lord 1896 Theory of Sound, vol. II, 2nd edn, pp. 319326. Macmillan.
Rubinow, S. I. & Keller, J. B. 1971 Wave propagation in a fluid-filled tube. J. Acoust. Soc. Am. 50, 198223.Google Scholar
Womersley, J. R. 1955 Oscillatory motion of a viscous liquid in a thin-walled elastic tube — I: The linear approximation for long waves. Phil. Mag. 46, 199221.Google Scholar
Yaron, I. & Gal-Or, B. 1974 Similarity rules and degrees of thermodynamic coupling in flowing systems. Appl. Sci. Res. 30, 1731.Google Scholar
Young, T. 1808 Hydraulic investigations, subservient to an intended Croonian lecture on the motion of blood. Phil. Trans. R. Soc. Lond. 98, 164186.Google Scholar
Zwikker, C. & Kosten, C. 1949 Sound Absorbing Materials. Elsevier.