Published online by Cambridge University Press: 26 April 2006
The three-dimensional boundary layer on a swept wing can support different types of hydrodynamic instability. Here attention is focused on the so-called ‘spanwise instability’ problem which occurs when the attachment-line boundary layer on the leading edge becomes unstable to Tollmien–Schlichting waves. In order to gain insight into the interactions that are important in that problem a simplified basic state is considered. This simplified flow corresponds to the swept attachment-line boundary layer on an infinite flat plate. The basic flow here is an exact solution of the Navier–Stokes equations and its stability to two-dimensional waves propagating along the attachment line can be considered exactly at finite Reynolds number. This has been done in the linear and weakly nonlinear regimes by Hall, Malik & Poll (1984) and Hall & Malik (1986). Here the corresponding problem is studied for oblique waves and their interaction with two-dimensional waves is investigated. In fact oblique modes cannot be described exactly at finite Reynolds number so it is necessary to make a high-Reynolds-number approximation and use triple-deck theory. It is shown that there are two types of oblique wave which, if excited, cause the destabilization of the two-dimensional mode and the breakdown of the disturbed flow at a finite distance from the leading edge. First a low-frequency mode closely related to the viscous stationary crossflow mode discussed by Hall (1986) and MacKerrell (1987) is a possible cause of breakdown. Secondly a class of oblique wave with frequency comparable with that of the two-dimensional mode is another cause of breakdown. It is shown that the relative importance of the modes depends on the distance from the attachment line.