Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-02T19:01:23.831Z Has data issue: false hasContentIssue false

Wall shear stress from jetting cavitation bubbles: influence of the stand-off distance and liquid viscosity

Published online by Cambridge University Press:  02 December 2021

Qingyun Zeng
Affiliation:
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Republic of Singapore 637371
Hongjie An*
Affiliation:
Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
Claus-Dieter Ohl*
Affiliation:
Department Soft Matter, Institute for Physics, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39016 Magdeburg, Germany
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

We study systematically the cavitation-induced wall shear stress on rigid boundaries as a function of liquid viscosity $\mu$ and stand-off distance $\gamma$ using axisymmetric volume of fluid (VoF) simulations. Here, $\gamma =d/R_{max}$ is defined with the initial distance of bubble centre from the wall $d$ and the bubble equivalent radius at its maximum expansion $R_{max}$. The simulations predict accurately the overall bubble dynamics and the time-dependent liquid film thickness between the bubble and the wall prior to the collapse. The spatial and temporal wall shear stress is discussed in detail as a function of $\gamma$ and the inverse Reynolds number $1/Re$. The amplitude of the wall shear stress is investigated over a large parameter space of viscosity and stand-off distance. The inward stress is caused by the shrinking bubble and its maximum value $\tau _{mn}$ follows $\tau _{mn} Re^{0.35}=-70\gamma +110$ (kPa) for $0.5<\gamma <1.4$. The expanding bubble and jet spreading on the boundary produce an outward-directed stress. The maximum outward stress is generated shortly after impact of the jet during the early spreading. We find two scaling laws for the maximum outward stress $\tau _{mp}$ with $\tau _{mp} \sim \mu ^{0.2} h_{jet}^{-0.3} U_{jet}^{1.5}$ for $0.5\leq \gamma \leq 1.1$ and $\tau _{mp} \sim \mu ^{-0.25} h_{jet}^{-1.5} U_{jet}^{1.5}$ for $\gamma \geq 1.1$, where $U_{jet}$ is the jet impact velocity and $h_{jet}$ is the distance between lower bubble interface and wall prior to impact.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beig, S.A., Aboulhasanzadeh, B. & Johnsen, E. 2018 Temperatures produced by inertially collapsing bubbles near rigid surfaces. J. Fluid Mech. 852, 105125.CrossRefGoogle Scholar
Blake, J.R. & Gibson, D.C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19 (1), 99123.CrossRefGoogle Scholar
Brackbill, J.U., Kothe, D.B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.CrossRefGoogle Scholar
Brennen, C.E. 2014 Cavitation and Bubble Dynamics. Cambridge University Press.Google Scholar
Brujan, E.A., Keen, G.S., Vogel, A. & Blake, J.R. 2002 The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. Fluids 14 (1), 8592.CrossRefGoogle Scholar
Chahine, G.L., Kapahi, A., Choi, J.-K. & Hsiao, C.-T. 2016 Modeling of surface cleaning by cavitation bubble dynamics and collapse. Ultrason. Sonochem. 29, 528549.CrossRefGoogle Scholar
Denner, F., Evrard, F. & van Wachem, B. 2020 Modeling acoustic cavitation using a pressure-based algorithm for polytropic fluids. Fluids 5 (2), 69.CrossRefGoogle Scholar
Dijkink, R. & Ohl, C.-D. 2008 Measurement of cavitation induced wall shear stress. Appl. Phys. Lett. 93 (25), 254107.CrossRefGoogle Scholar
Glauert, M.B. 1956 The wall jet. J. Fluid Mech. 1 (6), 625643.CrossRefGoogle Scholar
Gonzalez-Avila, S.R., van Blokland, A.C., Zeng, Q. & Ohl, C.-D. 2020 Jetting and shear stress enhancement from cavitation bubbles collapsing in a narrow gap. J. Fluid Mech. 884, A23.CrossRefGoogle Scholar
Gonzalez-Avila, S.R., Klaseboer, E., Khoo, B.C. & Ohl, C.-D. 2011 Cavitation bubble dynamics in a liquid gap of variable height. J. Fluid Mech. 682, 241260.CrossRefGoogle Scholar
Han, B., Köhler, K., Jungnickel, K., Mettin, R., Lauterborn, W. & Vogel, A. 2015 Dynamics of laser-induced bubble pairs. J. Fluid Mech. 771, 706742.CrossRefGoogle Scholar
Jayaprakash, A., Hsiao, C.-T. & Chahine, G. 2012 Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall. J. Fluids Engng 134 (3), 031301.CrossRefGoogle Scholar
Johnsen, E. & Colonius, T.I.M. 2009 Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 629, 231262.CrossRefGoogle ScholarPubMed
Koch, M., Lechner, C., Reuter, F., Köhler, K., Mettin, R. & Lauterborn, W. 2016 Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using openfoam. Comput. Fluids 126, 7190.CrossRefGoogle Scholar
Koukouvinis, P., Strotos, G., Zeng, Q., Gonzalez-Avila, S.R., Theodorakakos, A., Gavaises, M. & Ohl, C.-D. 2018 Parametric investigations of the induced shear stress by a laser-generated bubble. Langmuir 34 (22), 64286442.CrossRefGoogle ScholarPubMed
Lauer, E., Hu, X.Y., Hickel, S. & Adams, N.A. 2012 Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics. Comput. Fluids 69, 119.CrossRefGoogle Scholar
Lechner, C., Lauterborn, W., Koch, M. & Mettin, R. 2020 Jet formation from bubbles near a solid boundary in a compressible liquid: numerical study of distance dependence. Phys. Rev. Fluids 5 (9), 093604.CrossRefGoogle Scholar
Lee, M., Klaseboer, E. & Khoo, B.C. 2007 On the boundary integral method for the rebounding bubble. J. Fluid Mech. 570, 407429.CrossRefGoogle Scholar
Li, S., Han, R., Zhang, A.M. & Wang, Q.X. 2016 Analysis of pressure field generated by a collapsing bubble. Ocean Engng 117, 2238.CrossRefGoogle Scholar
Miller, S.T., Jasak, H., Boger, D.A., Paterson, E.G. & Nedungadi, A. 2013 A pressure-based, compressible, two-phase flow finite volume method for underwater explosions. Comput. Fluids 87, 132143.CrossRefGoogle Scholar
Ohl, C.-D., Arora, M., Dijkink, R., Janve, V. & Lohse, D. 2006 a Surface cleaning from laser-induced cavitation bubbles. Appl. Phys. Lett. 89 (7), 074102.CrossRefGoogle Scholar
Ohl, C.-D., Arora, M., Ikink, R., De Jong, N., Versluis, M., Delius, M. & Lohse, D. 2006 b Sonoporation from jetting cavitation bubbles. Biophys. J. 91 (11), 42854295.CrossRefGoogle ScholarPubMed
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.CrossRefGoogle Scholar
Plesset, M.S. & Chapman, R.B. 1971 Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech. 47 (2), 283290.CrossRefGoogle Scholar
Popinet, S. & Zaleski, S. 2002 Bubble collapse near a solid boundary: a numerical study of the influence of viscosity. J. Fluid Mech. 464, 137163.CrossRefGoogle Scholar
Rau, K.R., Quinto-Su, P.A., Hellman, A.N. & Venugopalan, V. 2006 Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects. Biophys. J. 91 (1), 317329.CrossRefGoogle ScholarPubMed
Reuter, F. & Kaiser, S.A. 2019 High-speed film-thickness measurements between a collapsing cavitation bubble and a solid surface with total internal reflection shadowmetry. Phys. Fluids 31 (9), 097108.CrossRefGoogle Scholar
Reuter, F., Lauterborn, S., Mettin, R. & Lauterborn, W. 2017 Membrane cleaning with ultrasonically driven bubbles. Ultrason. Sonochem. 37, 542560.CrossRefGoogle ScholarPubMed
Reuter, F. & Mettin, R. 2016 Mechanisms of single bubble cleaning. Ultrason. Sonochem. 29, 550562.CrossRefGoogle ScholarPubMed
Reuter, F. & Mettin, R. 2018 Electrochemical wall shear rate microscopy of collapsing bubbles. Phys. Rev. Fluids 3 (6), 063601.CrossRefGoogle Scholar
Rusche, H. 2003 Computational fluid dynamics of dispersed two-phase flows at high phase fractions. PhD thesis, Imperial College London (University of London).Google Scholar
Schlichting, H. & Gersten, K. 2016 Boundary-Layer Theory. Springer.Google Scholar
Supponen, O., Obreschkow, D., Tinguely, M., Kobel, P., Dorsaz, N. & Farhat, M. 2016 Scaling laws for jets of single cavitation bubbles. J. Fluid Mech. 802, 263293.CrossRefGoogle Scholar
Trummler, T., Bryngelson, S.H., Schmidmayer, K., Schmidt, S.J., Colonius, T. & Adams, N.A. 2020 Near-surface dynamics of a gas bubble collapsing above a crevice. J. Fluid Mech. 899, A16.CrossRefGoogle Scholar
Vogel, A., Lauterborn, W. & Timm, R. 1989 Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299338.CrossRefGoogle Scholar
Wang, Q. 2014 Multi-oscillations of a bubble in a compressible liquid near a rigid boundary. J. Fluid Mech. 745, 509536.CrossRefGoogle Scholar
Wang, Q., Liu, W., Zhang, A.M. & Sui, Y. 2015 Bubble dynamics in a compressible liquid in contact with a rigid boundary. Interface Focus 5 (5), 20150048.CrossRefGoogle Scholar
Weller, H.G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620631.CrossRefGoogle Scholar
Zeng, Q., Gonzalez-Avila, S.R., Dijkink, R., Koukouvinis, P., Gavaises, M. & Ohl, C.-D. 2018 a Wall shear stress from jetting cavitation bubbles. J. Fluid Mech. 846, 341355.CrossRefGoogle Scholar
Zeng, Q., Gonzalez-Avila, S.R. & Ohl, C.-D. 2020 Splitting and jetting of cavitation bubbles in thin gaps. J. Fluid Mech. 896, A28.CrossRefGoogle Scholar
Zeng, Q., Gonzalez-Avila, S.R., Ten Voorde, S. & Ohl, C.-D. 2018 b Jetting of viscous droplets from cavitation-induced Rayleigh–Taylor instability. J. Fluid Mech. 846, 916943.CrossRefGoogle Scholar
Zhang, A.M., Li, S. & Cui, J. 2015 Study on splitting of a toroidal bubble near a rigid boundary. Phys. Fluids 27 (6), 062102.CrossRefGoogle Scholar
Zhang, A.M. & Liu, Y.L. 2015 Improved three-dimensional bubble dynamics model based on boundary element method. J. Comput. Phys. 294, 208223.CrossRefGoogle Scholar