Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T03:16:30.740Z Has data issue: false hasContentIssue false

Wake behind a three-dimensional dry transom stern. Part 1. Flow structure and large-scale air entrainment

Published online by Cambridge University Press:  26 July 2019

Kelli Hendrickson*
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Gabriel D. Weymouth
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Xiangming Yu
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Dick K.-P. Yue
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email address for correspondence: [email protected]

Abstract

We present high-resolution implicit large eddy simulation (iLES) of the turbulent air-entraining flow in the wake of three-dimensional rectangular dry transom sterns with varying speeds and half-beam-to-draft ratios $B/D$. We employ two-phase (air/water), time-dependent simulations utilizing conservative volume-of-fluid (cVOF) and boundary data immersion (BDIM) methods to obtain the flow structure and large-scale air entrainment in the wake. We confirm that the convergent-corner-wave region that forms immediately aft of the stern wake is ballistic, thus predictable only by the speed and (rectangular) geometry of the ship. We show that the flow structure in the air–water mixed region contains a shear layer with a streamwise jet and secondary vortex structures due to the presence of the quasi-steady, three-dimensional breaking waves. We apply a Lagrangian cavity identification technique to quantify the air entrainment in the wake and show that the strongest entrainment is where wave breaking occurs. We identify an inverse dependence of the maximum average void fraction and total volume entrained with $B/D$. We determine that the average surface entrainment rate initially peaks at a location that scales with draft Froude number and that the normalized average air cavity density spectrum has a consistent value providing there is active air entrainment. A small parametric study of the rectangular geometry and stern speed establishes and confirms the scaling of the interface characteristics with draft Froude number and geometry. In Part 2 (Hendrikson & Yue, J. Fluid Mech., vol. 875, 2019, pp. 884–913) we examine the incompressible highly variable density turbulence characteristics and turbulence closure modelling.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Southampton Marine and Maritime Institute, University of Southampton, SO16 7QF, UK.

References

Adams, P., George, K., Stephens, M., Brucker, K. A., O’Shea, T. T. & Dommermuth, D. G. 2010 A numerical simulation of a plunging breaking wave. Phys. Fluids 22 (9), 091111.10.1063/1.3487758Google Scholar
Aspden, A., Nikiforkakis, N., Dalziel, S. & Bell, J. B. 2008 Analysis of implicit LES methods. Commun. Appl. Maths. Comput. Sci. 3 (1), 103126.10.2140/camcos.2008.3.103Google Scholar
Baldy, S. 1993 A generation-dispersion model of ambient and transient bubbles in the close vicinity of breaking waves. J. Geophys. Res. 98 (C10), 1827718293.10.1029/93JC01627Google Scholar
Brocchini, M. & Peregrine, D. H. 2001 The dynamics of strong turbulence at free surfaces. Part 1. Description. J. Fluid Mech. 449, 225254.10.1017/S0022112001006012Google Scholar
Chachereau, Y. & Chanson, H. 2011 Bubbly flow measurements in hydraulic jumps with small inflow Froude numbers. Intl J. Multiphase Flow 37 (6), 555564.10.1016/j.ijmultiphaseflow.2011.03.012Google Scholar
Chanson, H. 1995 Air entrainment in two-dimensional turbulent shear flows with partially developed inflow conditions. Intl J. Multiphase Flow 21 (6), 11071121.Google Scholar
Chanson, H. 2009 Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. Eur. J. Mech. (B/Fluids) 28 (2), 191210.10.1016/j.euromechflu.2008.06.004Google Scholar
Chanson, H., Aoki, S. & Hoque, A. 2004 Physical modelling and similitude of air bubble entrainment at vertical circular plunging jets. Chem. Engng Sci. 59 (4), 747758.10.1016/j.ces.2003.11.016Google Scholar
Chanson, H. & Brattberg, T. 2000 Experimental study of the air–water shear flow in a hydraulic jump. Intl J. Multiphase Flow 26 (4), 583607.10.1016/S0301-9322(99)00016-6Google Scholar
Chanson, H. & Manasseh, R. 2003 Air entrainment processes in a circular plunging jet: void-fraction and acoustic measurements. Trans. ASME J. Fluids Engng 125 (5), 910921.Google Scholar
Cummings, P. D. & Chanson, H. 1997 Air entrainment in the developing flow region of plunging jets. Part 2. Experimental. Trans. ASME J. Fluids Engng 119 (3), 603608.10.1115/1.2819287Google Scholar
Deane, G. B. & Stokes, M. D. 2002 Scale dependence of bubble creation mechanisms in breaking waves. Nature 418 (6900), 839844.10.1038/nature00967Google Scholar
Deike, L., Melville, W. K. & Popinet, S. 2016 Air entrainment and bubble statistics in breaking waves. J. Fluid Mech. 801, 91129.10.1017/jfm.2016.372Google Scholar
Dong, R. R., Katz, J. & Huang, T. T. 1997 On the structure of bow waves on a ship model. J. Fluid Mech. 346, 77115.10.1017/S0022112097005946Google Scholar
Drazen, D. A., Fullerton, A. M., Fu, T. C., Beale, K. L. C., O’Shea, T. T., Brucker, K. A., Dommermuth, D. G., Wyatt, D. C., Bhushan, S., Carrica, P. M. et al. 2010 A comparison of model-scale experimental measurements and computational predictions for a large transom-stern wave. In Proceedings of the 28th Symposium on Naval Ship Hydrodynamics. Pasadena, California. US Office of Naval Research.Google Scholar
Drikakis, D., Fureby, C., Grinstein, F. F. & Youngs, D. 2007 Simulation of transition and turbulence decay in the Taylor–Green vortex. J. Turbul. 8 (20), N20.Google Scholar
Druzhinin, O. A. & Elghobashi, S. 1998 Direct numerical simulations of bubble-laden turbulent flows using the two-fluid formulation. Phys. Fluids 10 (3), 685697.10.1063/1.869594Google Scholar
Ferrante, A. & Elghobashi, S. E. 2007 On the effects of microbubbles on Taylor–Green vortex flow. J. Fluid Mech. 572, 145177.10.1017/S0022112006003545Google Scholar
Fu, T. C., Fullerton, A. M., Drazen, D. A., Minnick, L., Walker, D., Ratcliffe, T., Russell, L. & Capitain, M.2010a A detailed study of transom breaking waves. Part 2. Tech. Rep. NSWCCD-50-TR-2010/003. Naval Surface Warfare Center Carderock Div, Bethesda, MD.Google Scholar
Fu, T. C., Fullerton, A. M., Terrill, E. J. & Lada, G. 2006 Measurements of the wave fields around the R/V Athena I. In Proceedings of the 26th Symposium on Naval Ship Hydrodynamics. Strategic Analysis, Inc.Google Scholar
Fu, T. C., Ratcliffe, T., O’Shea, T. T., Brucker, K. A., Graham, R. S., Wyatt, D. C. & Dommermuth, D. G. 2010b A comparison of experimental measurements and computational predicitions of a Deep-V planing hull. In 28th Symposium on Naval Hydrodynamics. Pasadena, California. US Office of Naval Research.Google Scholar
Fullerton, A. M., Fu, T. C., Brewton, S., Brucker, K. A., O’Shea, T. T. & Dommermuth, D. G. 2010 A comparison of measured and predicted wave-impact pressures from breaking and non-breaking waves. In 28th Symposium on Naval Hydrodynamics. Pasadena, California. US Office of Naval Research.Google Scholar
Garrett, C., Li, M. & Farmer, D. 2000 The connection between bubble size spectra and energy dissipation rates in the upper ocean. J. Phys. Oceanogr. 30, 21632171.10.1175/1520-0485(2000)030<2163:TCBBSS>2.0.CO;22.0.CO;2>Google Scholar
Hendrickson, K., Weymouth, G. D., Banerjee, S. & Yue, D. K.-P. 2013 Air entrainment and multiphase turbulence in the bubbly wake of a transom stern. Intl Shipbuild. Prog. 60 (1–4), 375401.Google Scholar
Hendrickson, K. & Yue, D. K.-P. 2019 Wake behind a three-dimensional dry transom stern. Part 2. Analysis and modelling of incompressible highly variable density turbulence. J. Fluid Mech. 875, 884913.10.1017/jfm.2019.506Google Scholar
Hinze, J. O. 1955 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1 (3), 289295.10.1002/aic.690010303Google Scholar
Hoque, A. & Aoki, S. I. 2008 Air entrainment and associated energy dissipation in steady and unsteady plunging jets at free surface. Appl. Ocean Res. 30 (1), 3745.Google Scholar
Hoyt, J. & Sellin, R. 1989 Hydraulic jump as ‘mixing layer’. J. Hydraul. Engng 115 (12), 16071614.10.1061/(ASCE)0733-9429(1989)115:12(1607)Google Scholar
Jingsen, M., Oberai, A. A., Hyman, M. C., Drew, D. A. Jr. & Lahey, R. T. L. 2011 Two-fluid modeling of bubbly flows around surface ships using a phenomenological subgrid air entrainment model. Comput. Fluids 52, 5057.Google Scholar
Lamarre, E. & Melville, W. K. 1991 Air entrainment and dissipation in breaking waves. Nature 351, 469472.10.1038/351469a0Google Scholar
Lin, C., Hsieh, S.-C. H., Lin, I.-J., Chang, K.-A. & Raikar, R. V. 2012 Flow property and self-similarity in steady hydraulic jumps. Exp. Fluids 53 (5), 15911616.10.1007/s00348-012-1377-2Google Scholar
Ma, G., Shi, F. & Kirby, J. T. 2011 A polydisperse two-fluid model for surf zone bubble simulation. J. Geophys. Res. 116, C05010.10.1029/2010JC006667Google Scholar
Maki, K. J., Troesch, A. W. & Beck, R. F. 2008 Experiments of two-dimensional transom stern flow. J. Ship Res. 52 (4), 291300.Google Scholar
Martínez-Legazpi, P., Rodríguez-Rodríguez, J., Korobkin, A. & Lasheras, J. C. 2015 Formation of corner waves in the wake of a partially submerged bluff body. J. Fluid Mech. 771, 547563.Google Scholar
Martínez-Legazpi, P., Rodríguez-Rodríguez, J., Marugán-Cruz, C. & Lasheras, J. C. 2013 Plunging to spilling transition in corner surface waves in the wake of a partially submerged vertical plate. Exp. Fluids 54 (1), 111.Google Scholar
Masnadi, N., Erinin, M. A., Washuta, N., Nasiri, F., Balaras, E. & Duncan, J. H. 2018 Air entrainment and surface fluctuations in a turbulent ship hull boundary layer. In Proceedings of the 32nd Symposium on Naval Ship Hydrodynamics.Google Scholar
Mortazavi, M., Le Chenadec, V., Moin, P. & Mani, A. 2016 Direct numerical simulation of a turbulent hydraulic jump: turbulence statistics and air entrainment. J. Fluid Mech. 797, 6094.10.1017/jfm.2016.230Google Scholar
Mossa, M. & Tolve, U. 1998 Flow visualization in bubbly two-phase hydraulic jump. Trans. ASME J. Fluids Engng 120, 160165.10.1115/1.2819641Google Scholar
Ohl, C. D., Oguz, H. N. & Prosperetti, A. 2000 Mechanism of air entrainment by a disturbed liquid jet. Phys. Fluids 12 (7), 17101714.Google Scholar
Olivieri, A., Pistani, F., Wilson, R., Campana, E. F. & Stern, F. 2007 Scars and vortices induced by ship bow and shoulder wave breaking. Trans. ASME J. Fluids Engng 129 (11), 14451459.10.1115/1.2786490Google Scholar
Pagliara, S., Kurdistani, S. & Roshni, T. 2011 Rooster tail wave hydraulics of chutes. J. Hydraul. Engng 137 (9), 10851088.10.1061/(ASCE)HY.1943-7900.0000397Google Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.10.1016/j.jcp.2009.04.042Google Scholar
Rodriguez-Rodriguez, J., Marugan-Cruz, C., Aliseda, A. & Lasheras, J. C. 2011 Dynamics of large turbulent structures in a steady breaker. Exp. Therm. Fluid Sci. 35, 301310.Google Scholar
Rouse, H., Bhoota, B. V. & Hsu, E.-Y. 1949 Design of channel expansions. Proc. ASCE 75 (9), 13691385.Google Scholar
Samet, H. & Tamminen, M. 1988 Efficient component labeling of images of arbitrary dimension represented by linear bintrees. IEEE Trans. Pattern Anal. Mach. Intell. 10 (4), 579586.Google Scholar
Taylor, G. I. & Green, A. E. 1937 Mechanism of the production of small eddies from large ones. Proc. R. Soc. Lond. A 158, 499521.Google Scholar
Terrill, E. J. & Fu, T. C. 2008 At-sea measurements for ship hydromechanics. In Proceedings of the 27th Symposium on Naval Ship Hydrodynamics, vol. 1. US Office of Naval Research.Google Scholar
Terrill, E. J. & Taylor, G. R. L. 2015 Entrainment of air at the transoms of full-scale surface ships. J. Ship Res. 59 (1), 4965.Google Scholar
Weymouth, G. D., Hendrickson, K., Banerjee, S. & Yue, D. K.-P. 2010 Bubble source modeling using macro-scale two-phase flow simulations. In Proceedings of the 28th Symposium on Naval Ship Hydrodynamics. Pasadena, California. US Office of Naval Research.Google Scholar
Weymouth, G. D. & Triantafyllou, M. S. 2013 Ultra-fast escape of a deformable jet-propelled body. J. Fluid Mech. 721, 367385.10.1017/jfm.2013.65Google Scholar
Weymouth, G. D. & Yue, D. K.-P. 2010 Conservative volume-of-fluid method for free-surface simulations on cartesian-grids. J. Comput. Phys. 229 (8), 28532865.10.1016/j.jcp.2009.12.018Google Scholar
Weymouth, G. D. & Yue, D. K.-P. 2011 Boundary data immersion method for Cartesian-grid simulations of fluid-body interaction problems. J. Comput. Phys. 230 (16), 62336247.10.1016/j.jcp.2011.04.022Google Scholar
Wyatt, D. C., Fu, T. C., Taylor, G. L., Terrill, E. J., Xing, T., Bhushan, S., O’Shea, T. T. & Dommermuth, D. G. 2008 A comparison of full-scale experimental measurements and computational predictions of the transom-stern wave of the R/V Athena I. In Proceedings of the 27th Symposium on Naval Ship Hydrodynamics. US Office of Naval Research.Google Scholar
Zhou, Y., Grinstein, F. F., Wachtor, A. J. & Haines, B. M. 2014 Estimating the effective Reynolds number in implicit large-eddy simulation. Phys. Rev. E 89, 013303.Google Scholar
Zhu, Y. G., Oguz, H. N. & Prosperetti, A. 2000 On the mechanism of air entrainment by liquid jets at a free surface. J. Fluid Mech. 404, 151177.10.1017/S0022112099007090Google Scholar

Hendrickson Supplementary Movie 1

Instantaneous isosurface of volume fraction f=0.5 for B/D=1, Fr=2.53 within the interrogation domain. Flow is from left to right (+x). Viewed from above.

Download Hendrickson Supplementary Movie 1(Video)
Video 10.4 MB

Hendrickson Supplementary Movie 2

Instantaneous isosurface of volume fraction f=0.5 for B/D=1, Fr=2.53 within the interrogation domain. Flow is from left to right (+x). Viewed from side.

Download Hendrickson Supplementary Movie 2(Video)
Video 8.3 MB

Hendrickson Supplementary Movie 3

Instantaneous isosurface of volume fraction f=0.5 for B/D=1.25, Fr=2.53 within the interrogation domain. Flow is from left to right (+x). Viewed from above.

Download Hendrickson Supplementary Movie 3(Video)
Video 11.3 MB

Hendrickson Supplementary Movie 4

Instantaneous isosurface of volume fraction f=0.5 for B/D=1.25, Fr=2.53 within the interrogation domain. Flow is from left to right (+x). Viewed from side.

Download Hendrickson Supplementary Movie 4(Video)
Video 8.8 MB

Hendrickson Supplementary Movie 5

Instantaneous isosurface of volume fraction f=0.5 for B/D=1.77, Fr=2.53 within the interrogation domain. Flow is from left to right (+x). Viewed from above.

Download Hendrickson Supplementary Movie 5(Video)
Video 10 MB

Hendrickson Supplementary Movie 6

Instantaneous isosurface of volume fraction f=0.5 for B/D=1.77, Fr=2.53 within the interrogation domain. Flow is from left to right (+x). Viewed from side.

Download Hendrickson Supplementary Movie 6(Video)
Video 9.1 MB