Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-08T05:34:29.942Z Has data issue: false hasContentIssue false

Vorticity transport mechanisms governing the development of leading-edge vortices

Published online by Cambridge University Press:  22 September 2017

James M. Akkala
Affiliation:
Department of Mechanical and Industrial Engineering/IIHR – Hydroscience and Engineering, University of Iowa, Iowa City, IA 52242, USA
James H. J. Buchholz*
Affiliation:
Department of Mechanical and Industrial Engineering/IIHR – Hydroscience and Engineering, University of Iowa, Iowa City, IA 52242, USA
*
Email address for correspondence: [email protected]

Abstract

The sequence of events constituting the formation of a leading-edge vortex (LEV) has been investigated for a periodically plunging nominally two-dimensional flat plate and a similarly articulated plate of aspect ratio two. Particle image velocimetry applied in multiple parallel planes and unsteady surface pressure measurements were used to quantify the sources and sinks of vorticity governing the growth of circulation in a control region moving with the plate in each case. In the two-dimensional case, the initial accumulation of (negative) vorticity in the nascent LEV produces a strong surface diffusive flux of vorticity that erodes the connection between the LEV and downstream boundary layer through cross-cancelation, initiating the ‘roll up’ of the LEV. Despite the significant diffusive flux earlier in the vortex development, there is no significant accumulation of secondary vorticity until after the severing occurs. The growth of the secondary vortex reduces the suction near the leading edge, such as to result in a self-limiting mechanism on the diffusive flux. In the finite-aspect-ratio case, a similar development is observed, except that the formation process is regulated or reversed by the spanwise convection of vorticity, which opposes the action of the surface diffusive flux. The physical mechanisms of vortex formation or reversal identified here can provide a basis for the design of passive or active flow control strategies to regulate vortex development.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharya, M. & Metwally, M. H. 1992 Unsteady pressure field and vorticity production over a pitching airfoil. AIAA J. 30 (2), 403411.Google Scholar
Akkala, J. M.2015 Understanding and controlling vorticity transport in unsteady, separated flows. PhD thesis, University of Iowa.Google Scholar
Anderson, J. M., Streitlien, K., Barrett, D. S. & Triantafyllou, M. S. 1998 Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 4172.CrossRefGoogle Scholar
Beem, H. R., Rival, D. E. & Triantafyllou, M. S. 2012 On the stabilization of leading-edge vortices with spanwise flow. Exp. Fluids 52, 511517.CrossRefGoogle Scholar
Birch, J. M. & Dickinson, M. H. 2001 Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412, 729733.CrossRefGoogle Scholar
Bomphrey, R. J., Lawson, N. J., Harding, N. J., Taylor, G. K. & Thomas, A. L. R. 2005 The aerodynamics of manduca sexta: digital particle image velocimetry analysis of the leading edge vortex. J. Exp. Biol. 208, 10791094.CrossRefGoogle ScholarPubMed
Bridges, D. H. 2010 Toward a theoretical description of vortex wake asymmetry. Prog. Aerosp. Sci. 46, 6280.CrossRefGoogle Scholar
Calderon, D. E., Wang, Z. J. & Gursul, I.2010 Effect of wing geometry on the lift of a plunging finite wing. In 40th AIAA Fluid Dynamics Conference, Chicago, IL. AIAA Paper 2010-4459.Google Scholar
Calderon, D. E., Wang, Z., Gursul, I. & Visbal, M. R.2012 Volumetric measurements and simulations of the vortex structures generated by low aspect ratio plunging wings. In 50th AIAA Aerospace Sciences Meeting, Nashville, TN. AIAA Paper 2012-0914.Google Scholar
Carr, Z., Chen, C. & Ringuette, M. J.2012 The effect of aspect ratio on the three-dimensional vortex formation of rotating flat-plate wings. In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee. AIAA Paper 2012-912.Google Scholar
Choi, J., Colonius, T. & Williams, D. R. 2015 Surging and plunging oscillations of an airfoil at low Reynolds number. J. Fluid Mech. 763, 237253.CrossRefGoogle Scholar
Cleaver, D. J., Wang, Z. & Gursul, I.2013 Oscillating flexible wings at low Reynolds numbers. In 51st AIAA Aerospace Sciences Meeting, Dallas, TX. AIAA Paper 2013-0674.Google Scholar
Eldredge, J. D., Wang, C. & Ol, M. V.2009 A computational study of a canonical pitch-up, pitch-down wing maneuver. In 39th AIAA Fluid Dynamics Conference, San Antonio, TX. AIAA Paper 2009-3687.Google Scholar
Ellington, C. P., van den Berg, C., Willmott, A. P. & Thomas, A. L. R. 1996 Leading-edge vortices in insect flight. Nature 384, 626630.CrossRefGoogle Scholar
Eslam Panah, A.2014 Flow structure and vorticity transport on a plunging wing. PhD thesis, University of Iowa.Google Scholar
Eslam Panah, A., Akkala, J. M. & Buchholz, J. H. J. 2015 Vorticity transport and the leading-edge vortex of a plunging airfoil. Exp. Fluids 56, 160.Google Scholar
Eslam Panah, A. & Buchholz, J. H. J. 2014 Parameter dependence of vortex interactions on a two-dimensional plunging plate. Exp. Fluids 55, 1687.Google Scholar
Jantzen, R., Taira, K., Granlund, K. & Ol, M. 2014 Vortex dynamics around pitching plates. Phys. Fluids 26, 053606.CrossRefGoogle Scholar
Kang, C. K., Aono, H., Cesnik, C. E. S. & Shyy, W. 2011 Effects of flexibility on the aerodynamic performance of flapping wings. J. Fluid Mech. 689, 3274.Google Scholar
Koochesfahani, M. M. 1989 Vortical patterns in the wake of an oscillating airfoil. AIAA J. 27 (9), 12001205.Google Scholar
Kuo, C. H. & Hsieh, J. K. 2001 Unsteady flow structure and vorticity convection over the airfoil oscillating at high reduced frequency. Exp. Therm. Fluid Sci. 24, 117129.CrossRefGoogle Scholar
Lai, J. C. S. & Platzer, M. F. 1999 Jet characteristics of a plunging airfoil. AIAA J. 37 (12), 15291537.CrossRefGoogle Scholar
Leishmann, J. G. & Beddoes, T. S. 1989 A semi-empirical model for dynamic stall. J. Am. Helicopter Soc. 34, 317.Google Scholar
Lewin, G. C. & Haj-Hariri, H. 2003 Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow. J. Fluid Mech. 492, 339362.Google Scholar
Lighthill, M. J. 1963 Introduction boundary layer theory. In Laminar Boundary Layers (ed. Rosenhead, L.), pp. 46113. Oxford University Press.Google Scholar
Lim, T. T., Teo, C. J., Lua, K. B. & Yeo, K. S. 2009 On the prolong attachment of leading edge vortex on a flapping wing. Mod. Phys. Lett. B 23 (3), 357360.CrossRefGoogle Scholar
Lua, K. B., Lim, T. T., Yeo, K. S. & Oo, G. Y. 2007 Wake-structure formation of a heaving two-dimensional elliptic airfoil. AIAA J. 45 (7), 15711583.CrossRefGoogle Scholar
Muijres, F. T., Johansson, L. C., Barfield, R., Wolf, M., Spedding, G. R. & Hedenstrom, A. 2008 Leading-edge vortex improves lift in slow-flying bats. Science 319, 12501253.Google Scholar
Mulleners, K., Kindler, K. & Raffel, M. 2012 Dynamic stall on a fully equipped helicopter model. Aerosp. Sci. Technol. 19, 7276.CrossRefGoogle Scholar
Ol, M. V. & Gharib, M. 2003 Leading-edge vortex structure of nonslender delta wings at low Reynolds number. AIAA J. 41, 1626.CrossRefGoogle Scholar
Pitt Ford, C. W. & Babinsky, H. 2013 Lift and the leading-edge vortex. J. Fluid Mech. 720 (9), 280313.Google Scholar
Shih, C. & Ho, C. M. 1994 Vorticity balance and time scales of a two-dimensional airfoil in an unsteady free stream. Phys. Fluids 6 (2), 710723.Google Scholar
Shyy, W., Lian, H., Tang, J., Liu, H., Trizila, P., Stanford, B., Bernal, L., Cesnik, C., Friedmann, P. & Ifju, P. 2008 Computational aerodynamics of low Reynolds number plunging, pitching and flexible wings for MAV applications. Acta Mech. Sinica 24 (4), 351373.CrossRefGoogle Scholar
Shyy, W., Trizilla, P., Kang, C.-K. & Aono, H. 2009 Can tip vortices enhance lift of a flapping wing? AIAA J. 47 (2), 289293.Google Scholar
Taira, K. & Colonius, T. 2009 Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers. J. Fluid Mech. 623, 187207.CrossRefGoogle Scholar
Taylor, G. K., Nudds, R. L. & Thomas, A. L. R. 2003 Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 425, 707711.CrossRefGoogle Scholar
Triantafyllou, M. S., Triantafyllou, G. S. & Gopalkrishnan, R. 1991 Wake mechanics for thrust generation in oscillating foils. Phys. Fluids A 3 (12), 28352837.Google Scholar
Triantafyllou, G. S., Triantafyllou, M. S. & Grosenbaugh, M. A. 1993 Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluids Struct. 7, 205224.Google Scholar
Visbal, M. R. 2009 High-fidelity simulation of transitional flows past a plunging airfoil. AIAA J. 47 (11), 26852697.Google Scholar
Visbal, M. R. & Shang, J. S. 1989 Investigation of the flow structure around a rapidly pitching airfoil. AIAA J. 27 (8), 10441051.Google Scholar
Warrick, D. R., Tobalske, B. W. & Powers, D. R. 2009 Lift production in the hovering hummingbird. Proc. R. Soc. Lond. B 276, 37473752.Google ScholarPubMed
Wojcik, C. J. & Buchholz, J. H. J. 2014a Parameter variation and the leading-edge vortex of a rotating flat plate. AIAA J. 52, 348357.Google Scholar
Wojcik, C. J. & Buchholz, J. H. J. 2014b Vorticity transport in the leading-edge vortex on a rotating blade. J. Fluid Mech. 743, 249261.CrossRefGoogle Scholar
Wong, J. G., Kriegseis, J. & Rival, D. E. 2013 An investigation into vortex growth and stabilization for two-dimensional plunging and flapping plates with varying sweep. J. Fluid. Struct. 43, 231243.Google Scholar
Wu, J. & Wu, J. 1998 Boundary vorticity dynamics since lighthill’s 1963 article: review and development. Theor. Comput. Fluid Dyn. 10, 459474.CrossRefGoogle Scholar
Wu, J. Z. & Wu, J. M 1993 Interactions between a solid surface and a viscous compressible flow field. J. Fluid Mech. 254, 183211.CrossRefGoogle Scholar
Yilmaz, T. & Rockwell, D. 2010 Three-dimensional flow structure on a maneuvering wing. Exp. Fluids 48, 539544.CrossRefGoogle Scholar
Yilmaz, T. & Rockwell, D. 2012 Flow structure on finite-span wings due to pitch-up motion. J. Fluid Mech. 691, 518545.Google Scholar