Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T16:38:50.782Z Has data issue: false hasContentIssue false

Vorticity and passive-scalar dynamics in two-dimensional turbulence

Published online by Cambridge University Press:  21 April 2006

Armando Babiano
Affiliation:
Laboratoire de Météorologie Dynamique du CNRS, Ecole Normale Supérieure, 75231 Paris Cedex 05, France
Claude Basdevant
Affiliation:
Laboratoire de Météorologie Dynamique du CNRS, Ecole Normale Supérieure, 75231 Paris Cedex 05, France
Bernard Legras
Affiliation:
Laboratoire de Météorologie Dynamique du CNRS, Ecole Normale Supérieure, 75231 Paris Cedex 05, France
Robert Sadourny
Affiliation:
Laboratoire de Météorologie Dynamique du CNRS, Ecole Normale Supérieure, 75231 Paris Cedex 05, France

Abstract

The dynamics of vorticity in two-dimensional turbulence is studied by means of semi-direct numerical simulations, in parallel with passive-scalar dynamics. It is shown that a passive scalar forced and dissipated in the same conditions as vorticity, has a quite different behaviour. The passive scalar obeys the similarity theory à la Kolmogorov, while the enstrophy spectrum is much steeper, owing to a hierarchy of strong coherent vortices. The condensation of vorticity into such vortices depends critically both on the existence of an energy invariant (intimately related to the feedback of vorticity transport on velocity, absent in passive-scalar dynamics, and neglected in the Kolmogorov theory of the enstrophy inertial range); and on the localness of flow dynamics in physical space (again not considered by the Kolmogorov theory, and not accessible to closure model simulations). When space localness is artificially destroyed, the enstrophy spectrum again obeys a k−1 law like a passive scalar. In the wavenumber range accessible to our experiments, two-dimensional turbulence can be described as a hierarchy of strong coherent vortices superimposed on a weak vorticity continuum which behaves like a passive scalar.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babiano, A., Basdevant, C. & Sadourny, R. 1985 Structure functions and dispersion laws in two-dimensional turbulence. J. Atmos. Sci. 42, 941949.Google Scholar
Basdevant, C., Couder, Y. & Sadourny, R. 1985 Vortices and vortex couples in two-dimensional turbulence. In Macroscopic Modelling of Turbulent Flows. Lecture Notes in Physics, vol. 230, pp. 327346. Springer.
Basdevant, C., Legras, B., Sadourny, R. & Beland, M. 1981 A study of barotropic model flows: intermittency waves and predictability. J. Atmos. Sci. 38, 23052326.Google Scholar
Basdevant, C., Lesieur, M. & Sadourny, R. 1978 Subgrid-scale modeling of enstrophy transfer in two-dimensional turbulence. J. Atmos. Sci. 35, 10281042.Google Scholar
Batchelor, G. K. 1969 Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids Suppl. 12, II 233.Google Scholar
Brachet, M. E., Meneguzzi, M. & Sulem, P. L. 1986 Small-scale dynamics of the high Reynolds number two-dimensional turbulence. Phys. Rev. Lett. 57, 683686.Google Scholar
Corcos, G. M. 1983 The prevalence of two-dimensional motion in the turbulent mixing layer. J. Méc. Theor. Appl., Numéro spécial 1983.Google Scholar
Couder, Y. 1984 Two dimensional grid turbulence in a thin liquid film. J. Phys. Lett. 45, 353360.Google Scholar
Desbois, M. 1975 Large-scale kinetic energy spectra from Eulerian analysis of Eole wind data. J. Atmos. Sci. 32, 18381847.Google Scholar
Fornberg, B. 1977 A numerical study of 2-D turbulence. J. Comput. Phys. 25, 131.Google Scholar
Frisch, U. 1987 Fully developed turbulence: where do we stand? Proc. Peyresq 1984 Meeting on Dynamical systems (ed. S. Diner). Springer (in press).
Frisch, U. & Sulem, P. L. 1984 Numerical simulation of the inverse cascade in two-dimensional turbulence. Phys. Fluids 27, 19211923.Google Scholar
Herring, J. R. & McWilliams, J. C. 1985 Comparison of direct numerical simulation of two-dimensional turbulence with two-point closure: the effects of intermittency. J. Fluid Mech. 153, 229242.Google Scholar
Holloway, G. & Hendershott, M. C. 1977 Stochastic closure for nonlinear Rossby waves. J. Fluid Mech. 82, 747765.Google Scholar
Holloway, G. & Kristmannsson, S. S. 1984 Stirring and transport of tracer fields by geostrophic turbulence. J. Fluid Mech. 141, 2750.Google Scholar
Kida, S. 1985 Numerical simulation of two-dimensional turbulence with high-symmetry. J. Phys. Soc. Japan 54, 28402854.Google Scholar
Kraichnan, R. H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 14171423.Google Scholar
Kraichnan, R. H. 1971 Inertial ranges in two- and three-dimensional turbulence. J. Fluid Mech. 47, 525535.Google Scholar
Legras, B. 1980 Turbulent phase shift of Rossby waves. Geophys. Astrophys. Fluid Dyn. 15, 253281.Google Scholar
Leith, C. E. 1968 Diffusion approximation for two-dimensional turbulence. Phys. Fluids 11, 671673.Google Scholar
Leith, C. E. 1985 Two-dimensional coherent structures. Turbolenza e Predicibilita nella Fluidodinamica Geofisica e la Dinamica del Clima. Scuola Internazionale di Fisica Enrico Fermi, LXXXVIII, pp. 266280. Societa Italiana di Fisica. North-Holland.
Lesieur, M. & Herring, J. 1985 Diffusion of a passive scalar in two-dimensional turbulence. J. Fluid Mech. 161, 7795.Google Scholar
Lin, C. C. 1967 The Theory of Hydrodynamic Stability. Cambridge University Press.
McIntyre, M. E. & Shepherd, T. G. 1987 An exact local conservation theorem for finite-amplitude disturbances to non-parallel shear flows, with remarks on Hamistonian structure and on Arnold's stability theorem. J. Fluid Mech. 181, 527565.Google Scholar
McWilliams, J. C. 1984 The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech. 146, 2143.Google Scholar
Monin, A. S. & Yaglom, A. M. 1965 Statistical Fluid Mechanics (ed. J. L. Lumley), vol. 2. MIT Press. (Revised and augmented edition from Russian original Statisticheskaya Gidromekhamika. Moscow: Nauca, 1965.)
Morel, P. & Larchevěque, M. 1974 Relative dispersion for constant-level balloons in the 200 mb general circulation. J. Atmos. Sci. 31, 21892196.Google Scholar
Pouquet, A., Lesieur, M., André, J. C. & Basdevant, C. 1975 Evolution of high Reynolds number two-dimensional turbulence. J. Fluid Mech. 72, 305319.Google Scholar
Rhines, P. B. 1975 Waves and turbulence on a beta-plane. J. Fluid Mech. 69, 417443.Google Scholar
Rhines, P. & Young, W. 1982 Homogenization of potential vorticity in planetary gyres. J. Fluid Mech. 122, 347367.Google Scholar
Rhines, P. & Young, W. 1983 How rapidly is a passive scalar mixed within closed streamlines? J. Fluid Mech. 133, 133145.Google Scholar
Sadourny, R. 1985 Quasi-geostrophic turbulence, an introduction. Turbolenza e Predicibilità nella Fluidodinamica Geofisica e la Dinamica del Clima. Scuola Internazionale di Fisica Enrico Fermi, LXXXVIII, pp. 133158. Società Italiana di Fisica.
Sadourny, R. & Basdevant, C. 1981 Une classe d'opérateurs adaptés à la modélisation de la diffusion turbulente en dimension deux. C. R. Acad. Sci. Paris 292 II, 10611064.Google Scholar
Sadourny, R. & Basdevant, C. 1985 Parameterization of subgrid scale barotropic and baroclinic eddies in quasi-geostrophic models: Anticipated Potential Vorticity Method. J. Atmos. Sci. 42, 13531363.Google Scholar
Santangelo, P., Paternalo, S. & Benzi, R. 1987 Statistical properties of two-dimensional turbulence. Europhys. Lett (in press).Google Scholar
Shepherd, T. G. 1987 Non-ergodicity of invisid two-dimensional flow on a beta-plane and on the surface of a rotating sphere. J. Fluid Mech. 184, 289302.Google Scholar
Sommeria, J. 1985 Sur la turbulence bi-dimensionnelle: une approche par la magnétohydrodynamique. Thèse, Université Scientifique et Médicale de Grenoble.
Staquet, C. & Lesieur, M. 1987 The mixing-layer and its coherence from the point of view of two-dimensional turbulence. J. Fluid Mech. (submitted).Google Scholar
Wiin-Nielsen, A. 1967 On the annual variation and spectral distribution of atmospheric energy. Tellus 19, 540559.Google Scholar
Winant, C. D. & Browand, F. K. 1974 Vortex pairing: A mechanism of turbulent mixing-layer growth at moderate Reynolds number. J. Fluid Mech. 63, 237255.Google Scholar