Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-19T15:00:49.908Z Has data issue: false hasContentIssue false

Vortical structures in the turbulent boundary layer: a possible route to a universal representation

Published online by Cambridge University Press:  25 April 2008

MICHEL STANISLAS
Affiliation:
Ecole Centrale de Lille, Laboratoire de Mécanique de Lille, Boulevard Paul Langevin, 59655 Villeneuve d'Ascq, France
LAURENT PERRET
Affiliation:
Ecole Centrale de Lille, Laboratoire de Mécanique de Lille, Boulevard Paul Langevin, 59655 Villeneuve d'Ascq, France
JEAN-MARC FOUCAUT
Affiliation:
Ecole Centrale de Lille, Laboratoire de Mécanique de Lille, Boulevard Paul Langevin, 59655 Villeneuve d'Ascq, France

Abstract

A study of streamwise oriented vortical structures embedded in turbulent boundary layers is performed by investigating an experimental database acquired by stereoscopic particle image velocimetry (SPIV) in a plane normal both to the mean flow and the wall. The characteristics of the experimental data allow us to focus on the spatial organization within the logarithmic region for Reynolds numbers Reθ up to 15000. On the basis of the now accepted hairpin model, relationships and interaction between streamwise vortices are first investigated via computation of two-point spatial correlations and the use of linear stochastic estimation (LSE). These analyses confirm that the shape of the most probable coherent structures corresponds to an asymmetric one-legged hairpin vortex. Moreover, two regions of different dynamics can be distinguished: the near-wall region below y+=150, densely populated with strongly interacting vortices; and the region above y+=150 where interactions between eddies happen less frequently. Characteristics of the detected eddies, such as probability density functions of their radius and intensity, are then studied. It appears that Reynolds number as well as wall-normal independences of these quantities are achieved when scaling with the local Kolmogorov scales. The most probable size of the detected vortices is found to be about 10 times the Kolmogorov length scale. These results lead us to revisit the equation for the mean square vorticity fluctuations, and to propose a new balance of this equation in the near-wall region. This analysis and the above results allow us to propose a new description of the near-wall region, leading to a new scaling which seems to have a good universality in the Reynolds-number range investigated. The possibility of reaching a universal scaling at high enough Reynolds number, based on the external velocity and the Kolmogorov length scale is suggested.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R. J. 1991 Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23, 261304.CrossRefGoogle Scholar
Adrian, R. J. 1993 Stochastic estimation of conditional structure. Eddy Structure Identification in Free Turbulent Shear Flows. (ed. Bonnet, J. P. & Glauser, M. N.). Kluwer.Google Scholar
Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.CrossRefGoogle Scholar
Adrian, R. J. & Moin, P. 1988 Stochastic estimation of organized turbulent structure: homogeneous shear flow. J. Fluid Mech. 190, 531559.Google Scholar
Adrian, R. J., Christensen, K. T. & Liu, Z. C. 2000 a Analysis and interpretation of turbulent velocity fields. Exps. Fluids 29, 275290.Google Scholar
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 b Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.Google Scholar
Del Álamo, J. C. & Jimenez, J. 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.CrossRefGoogle Scholar
Del Álamo, J. C., Jimenez, J., Zandonade, P. & Moser, R. D. 2004 Scaling of energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.CrossRefGoogle Scholar
Del Álamo, J. C., Jimenez, J., Zandonade, P. & Moser, R. D. 2006 Self similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329356.CrossRefGoogle Scholar
Brooke, J. W. & Hanratty, T. J. 1993 Origin of turbulence producing eddies in a channel flow. Phys. Fluids 5, 10111022.CrossRefGoogle Scholar
Carlier, J. 2001 Étude des structures cohérentes de la turbulence de paroi à grand nombre de Reynolds par Vélocimétrie par image de particules. PhD thesis, Université des Sciences et Technologies de Lille, France.CrossRefGoogle Scholar
Carlier, J. & Stanislas, M. 2005 Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry. J. Fluid Mech. 535, 143188.Google Scholar
Chakraborty, P., Balachandar, S. & Adrian, R. J. 2005 On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189214.Google Scholar
Choi, W. C. & Guezennec, Y. G. 1989 On the asymmetry of structures in turbulent boundary layers. Phys. Fluids 2, 628630.CrossRefGoogle Scholar
Chong, M. S., Perry, A. & Cantwell, B. J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids A 2, 765777.Google Scholar
Christensen, K. T. & Adrian, R. J. 2001 Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431, 433443.Google Scholar
Das, S. K., Tanahashi, M., Shoji, K. & Miyauchi, T. 2006 Statistical properties of coherent fine eddies in wall-bounded turbulent flows by direct numerical simulation. Theor. Comput. Fluid Dyn. 20, 5571.CrossRefGoogle Scholar
Foucaut, J., Carlier, J. & Stanislas, M. 2004 PIV optimization for the study of turbulent flow using spectral analysis. Meas. Sci. Technol. 15-6, 10461058.Google Scholar
Foucaut, J., Stanislas, M. & Kostas, J. 2006 Wall shear stress measurement using stereoscopic PIV. 12th Int Symp. on Flow Vizualization, September 10–14, 2006, Gottingen, Germany.Google Scholar
Ganapathisubramani, B., Longmire, E. K. & Marusic, I. 2003 Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 3546.CrossRefGoogle Scholar
Ganapathisubramani, B., Hutchins, N., Hambleton, W. T., Longmire, E. K. & Marusic, I. 2005 Investigation of large-scale coherent structures in a turbulent boundary layer using two-point correlations. J. Fluid Mech. 524, 5780.CrossRefGoogle Scholar
Ganapathisubramani, B., Longmire, E. K. & Marusic, I. 2006 Experimental investigation of vortex properties in a turbulent boundary layer. Phys Fluids 18, 055105.CrossRefGoogle Scholar
Graaf, D. B. D. & Eaton, J. K. 2000 Reynolds number scaling of the flat plate turbulent boundary layer. J. Fluid Mech. 422, 319346.Google Scholar
Guezennec, Y. 1989 Stochastic estimation of coherent structures in turbulent boundary layers. Phys Fluids A 1, 10541060.CrossRefGoogle Scholar
Guezennec, Y., Piomelli, U. & Kim, J. 1989 On the shape and dynamics of wall structure in turbulent channel flow. Phys Fluids A 1, 764766.Google Scholar
Hambleton, W., Hutchins, N. & Marusic, I. 2006 Simultaneous orthogonal-plane particle image velocimetry measurements in a turbulent boundary layer. J. Fluid Mech. 560, 5364.Google Scholar
Hanratty, T. J. & Papavassiliou, D. V. 1997 The role of wall vortices in producing turbulence. In Self–Sustaining Mechanisms of Wall Turbulence (ed. Panton, R. L.). Computational Mechanics Publications.Google Scholar
Head, M. R. & Bandyopadhyay, P. 1981 New aspects of turbulent boundary layer structure. J. Fluid Mech. 107, 297338.CrossRefGoogle Scholar
Hoyas, S. & Jimenez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to Re τ = 2003. Phys. Fluids 18, 011702.Google Scholar
Hutchins, N., Hambleton, W. T. & Marusic, I. 2005 Inclined cross-stream stereo particle image velocimetry mearsurements in turbulent boundary layers. J. Fluid Mech. 541, 2154.CrossRefGoogle Scholar
Jimenez, J. & Wray, A. A. 1998 On the characteristics of vortex filaments in isotropic turbulence. J. Fluid Mech. 373, 255285.CrossRefGoogle Scholar
Jimenez, J., del-álamo, J. C. & Flores, O. 2004 The large scale dynamics of near wall turbulence. J. Fluid Mech. 505, 179199.CrossRefGoogle Scholar
Kähler, C., Stanislas, M., Dewhirst, T. P. & Carlier, J. 2000 Investigation of the spatio-temporal flow structure in the log-law region of a turbulent boundary layer by means of multi-plane stereo particle image velocimetry. Selected paper presented at the 10th Intl Symp. on Applications of Laser Technology to Fluid Mechanics, Lisbon (Portugal) Springer.Google Scholar
Kang, S. J., Tanahashi, M. & Miyauchi, T. 2005 Dynamics of fine scale eddy clusters in turbulent channel flows. In Fourth Intl Symp. on Turbulence and Shear Flow Phenomena, Williamsburg, VA, USA, pp. 183–188.Google Scholar
Klewicki, J. 1989 Velocity vorticity correlation related to the gradients of the reynolds stresses in parallel turbulent wall flows. Phys. Fluids A 1, 12851288.Google Scholar
Lin, J. 2006 Detailed study of the coherent structures of the buffer layer of wall turbulence using stereo particle image velocimetry. PhD thesis, l'Ecole Centrale de Lille (in English).Google Scholar
Panton, R. L. 1997 Self–Sustaining Mechanisms of Wall Turbulence. Computational Mechanics Publications.Google Scholar
Perry, A. E. & Chong, M. S. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173217.Google Scholar
Perry, A. E. & Marusic, I. 1995 A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis. J. Fluid Mech. 298, 389407.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Priyadarshane, P., Klewicki, J., Treat, S. & Foss, J. 2007 Statistical structure of the turbulent boundary layer velocity-vorticity products at high and low Reynolds number. J. Fluid Mech. 570, 307346.Google Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.Google Scholar
Spalart, P. R. 1989 Theoretical and numerical study of the three-dimensional turbulent boundary layer. J. Fluid Mech. 205, 319340.Google Scholar
Stanislas, M., Foucaut, J.-M., Laval, J.-P. & Jie, L. 2005 Experimental study of coherent structures in a turbulent boundary layer using PIV. In Fourth Intl Symp on Turbulence and Shear Flow Phenomena, Williamsburg, VA, USA, pp. 45–50.Google Scholar
Tanahashi, M., Miyauchi, T. & Ikeda, J. 1997 Scaling law of coherent fine structure in homogeneous isotropic turbulence. In 11th Symp. Turbulence and Shear Flow, pp. 4-17–4-22.Google Scholar
Tanahashi, M., Iwase, S. & Miyauchi, T. 2001 Appearance and alignment with strain rate of coherent fine eddies in turbulent mixing layer. J. Turbulence 2.CrossRefGoogle Scholar
Tanahashi, M., Kang, S. J., Miyamoto, T., Shiokawa, S. & Miyauchi, T. 2004 Scaling law of fine scale eddies in turbulent channel flows up to Re τ = 800. Intl J. Heat Fluid Flow 25, 331340.Google Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.CrossRefGoogle Scholar
Theodorsen, T. 1952 Mechanism of turbulence. In Proc. 2nd Midwest. Conf. Fluid Mech., 2nd edn, Ohio State University, Columbus, Ohio, pp. 1–18.Google Scholar
Tomkins, C. D. & Adrian, R. J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.CrossRefGoogle Scholar
Wu, Y. & Christensen, K. 2006 Population trends of spanwise vortices in wall turbulence. J. Fluid Mech. 568, 5576.CrossRefGoogle Scholar
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar