Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-03T00:46:32.405Z Has data issue: false hasContentIssue false

Vortex reconnection in the late transition in channel flow

Published online by Cambridge University Press:  03 August 2016

Yaomin Zhao
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China
Yue Yang*
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China Center for Applied Physics and Technology, Peking University, Beijing 100871, China
Shiyi Chen
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China Center for Applied Physics and Technology, Peking University, Beijing 100871, China Department of Mechanics and Aerospace Engineering, South University of Science and Technology of China, Shenzhen 518055, China
*
Email address for correspondence: [email protected]

Abstract

Vortex reconnection, as the topological change of vortex lines or surfaces, is a critical process in transitional flows, but is challenging to accurately characterize, particularly in shear flows. We apply the vortex-surface field (VSF), whose isosurface is the vortex surface consisting of vortex lines, to study vortex reconnection in the Klebanoff-type temporal transition in channel flow. The VSF evolution can capture the reconnection of the hairpin-like vortical structures evolving from the initial vortex sheets in opposite halves of the channel. The incipient vortex reconnection is characterized by the vanishing minimum distance between a pair of vortex surfaces and the reduction of vorticity flux through the region enclosed by the wall and the VSF isoline of the channel half-height on the spanwise symmetric plane. We find that the surge of the wall-friction coefficient begins at the identified reconnection time. From the Biot–Savart law, the rapid reconnection of vortex lines can induce a velocity opposed to the mean flow, which partially blocks the flow near the central region and generally accelerates the near-wall fluid motion in the flow with constant mass flux. Therefore, the vortex reconnection appears to play an important role in the sudden increase of wall friction in transitional channel flows.

Type
Rapids
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.CrossRefGoogle Scholar
Aref, H. & Zawadzki, I. 1991 Linking of vortex rings. Nature 354, 5053.CrossRefGoogle Scholar
Bake, S., Meyer, D. G. W. & Rist, U. 2002 Turbulence mechanism in Klebanoff transition: a quantitative comparison of experiment and direct numerical simulation. J. Fluid Mech. 459, 217243.CrossRefGoogle Scholar
Boratav, O. N., Pelz, R. B. & Zabusky, N. J. 1992 Reconnection in orthogonally interacting vortex tubes: direct numerical simulations and quantifications. Phys. Fluids 4, 581605.CrossRefGoogle Scholar
Borodulin, V. I., Gaponenko, V. R., Kachanov, Y. S., Meyer, D. G. W., Rist, U., Lian, Q. X. & Lee, C. B. 2002 Late-stage transitional boundary-layer structures. Direct numerical simulation and experiment. Theor. Comput. Fluid Dyn. 15, 317337.CrossRefGoogle Scholar
Fohl, T. & Turner, J. S. 1975 Colliding vortex rings. Phys. Fluids 18, 3436.CrossRefGoogle Scholar
Herbert, T. 1988 Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20, 487526.CrossRefGoogle Scholar
Hussain, F. 1986 Coherent structures and turbulence. J. Fluid Mech. 173, 303356.CrossRefGoogle Scholar
Hussain, F. & Duraisamy, K. 2011 Mechanics of viscous vortex reconnection. Phys. Fluids 23, 021701.CrossRefGoogle Scholar
Hussain, F. & Husain, H. S. 1989 Elliptic jets. Part 1. Characteristics. J. Fluid Mech. 208, 257320.CrossRefGoogle Scholar
Jiang, G. S. & Shu, C. W. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202228.CrossRefGoogle Scholar
Kachanov, Y. S. 1994 Physical mechanism of laminar-boundary-layer transition. Annu. Rev. Fluid Mech. 26, 411482.CrossRefGoogle Scholar
Kerr, R. M. 2013 Swirling, turbulent vortex rings formed from a chain reaction of reconnection events. Phys. Fluids 25, 065101.CrossRefGoogle Scholar
Kida, S. & Takaoka, M. 1987 Bridging in vortex reconnection. Phys. Fluids 30, 29112914.CrossRefGoogle Scholar
Kida, S. & Takaoka, M. 1994 Vortex reconnection. Annu. Rev. Fluid Mech. 26, 169189.CrossRefGoogle Scholar
Kida, S., Takaoka, M. & Hussain, F. 1991 Collision of two vortex rings. J. Fluid Mech. 230, 583646.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. D. 1987 Turbulent statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M. 1962 The three-dimensional nature of boundary-layer instability. J. Fluid Mech. 12, 134.CrossRefGoogle Scholar
Kleckner, D. & Irvine, W. T. M. 2013 Creation and dynamics of knotted vortices. Nature Phys. 9, 253258.CrossRefGoogle Scholar
Lim, T. T. & Nickels, T. B. 1992 Instability and reconnection in the head-on collision of two vortex rings. Nature 357, 225227.CrossRefGoogle Scholar
Melander, M. V. & Hussain, F. 1989 Cross-linking of two antiparallel vortex tubes. Phys. Fluids A 1, 633636.CrossRefGoogle Scholar
Paoletti, M. S. & Lathrop, D. P. 2011 Quantum turbulence. Annu. Rev. Condens. Matter Phys. 2, 213234.CrossRefGoogle Scholar
Pumir, A. & Kerr, R. M. 1987 Numerical simulation of interacting vortex tubes. Phys. Rev. Lett. 58, 16361639.CrossRefGoogle ScholarPubMed
Schatzle, P. R.1987 An experimental investigation of fusion of vortex rings. PhD thesis, California Institute of Technology.Google Scholar
Shelly, M. J., Meiron, D. I. & Orszag, S. A. 1993 Dynamical aspects of vortex reconnection of perturbed anti-parallel vortex tubes. J. Fluid Mech. 246, 613652.CrossRefGoogle Scholar
Yang, Y. & Pullin, D. I. 2010 On Lagrangian and vortex-surface fields for flows with Taylor–Green and Kida–Pelz initial conditions. J. Fluid Mech. 661, 446481.CrossRefGoogle Scholar
Yang, Y. & Pullin, D. I. 2011 Evolution of vortex-surface fields in viscous Taylor–Green and Kida–Pelz flows. J. Fluid Mech. 685, 146164.CrossRefGoogle Scholar
Yang, Y., Pullin, D. I. & Bermejo-Moreno, I. 2010 Multi-scale geometric analysis of Lagrangian structures in isotropic turbulence. J. Fluid Mech. 654, 233270.CrossRefGoogle Scholar
Zhao, Y., Xia, Z., Shi, Y., Xiao, Z. & Chen, S. 2014 Constrained large-eddy simulation of laminar-turbulent transition in channel flow. Phys. Fluids 26, 095103.CrossRefGoogle Scholar
Zhao, Y., Yang, Y. & Chen, S. 2016 Evolution of material surfaces in the temporal transition in channel flow. J. Fluid Mech. 793, 840876.CrossRefGoogle Scholar
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar