Published online by Cambridge University Press: 10 July 1999
We present measurements of the density and velocity fields produced when an oscillating circular cylinder excites internal gravity waves in a stratified fluid. These measurements are obtained using a novel, non-intrusive optical technique suitable for determining the density fluctuation field in temporally evolving flows which are nominally two-dimensional. Although using the same basic principles as conventional methods, the technique uses digital image processing in lieu of large and expensive parabolic mirrors, thus allowing more flexibility and providing high sensitivity: perturbations of the order of 1% of the ambient density gradient may be detected. From the density gradient field and its time derivative it is possible to construct the perturbation fields of density and horizontal and vertical velocity. Thus, in principle, momentum and energy fluxes can be determined.
In this paper we examine the structure and amplitude of internal gravity waves generated by a cylinder oscillating vertically at different frequencies and amplitudes, paying particular attention to the role of viscosity in determining the evolution of the waves. In qualitative agreement with theory, it is found that wave motions characterized by a bimodal displacement distribution close to the source are attenuated by viscosity and eventually undergo a transition to a unimodal displacement distribution further from the source. Close quantitative agreement is found when comparing our results with the theoretical ones of Hurley & Keady (1997). This demonstrates that the new experimental technique is capable of making accurate measurements and also lends support to analytic theories. However, theory predicts that the wave beams are narrower than observed, and the amplitude is significantly under-predicted for low-frequency waves. The discrepancy occurs in part because the theory neglects the presence of the viscous boundary layers surrounding the cylinder, and because it does not take into account the effects of wave attenuation resulting from nonlinear wave–wave interactions between the upward and downward propagating waves near the source.