Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-18T21:17:56.409Z Has data issue: false hasContentIssue false

The viscous spreading of plane and axisymmetric gravity currents

Published online by Cambridge University Press:  20 April 2006

N. Didden
Affiliation:
Departments of Mechanical and Aerospace Engineering, University of Southern California, Los Angeles, California 90007
T. Maxworthy
Affiliation:
Departments of Mechanical and Aerospace Engineering, University of Southern California, Los Angeles, California 90007

Abstract

Measurements of the spreading rates of gravity-driven currents at both the surface and the bottom of a fluid layer of different density are reported. For the case of a constant inflow rate the spreading relations are derived by estimating the order of magnitude of the forces involved. After an initial balance between gravity and inertia forces the final spreading phase is governed by the balance between gravity and viscous forces. For the latter flow regime, measurements in plane and axisymmetric flow geometries agree well with the spreading relations for gravity currents with a no-slip boundary. The proportionality factor, which is not predicted from this model, is then determined from the measurements and a good agreement is found with the theoretical value derived in the accompanying paper by Huppert (1982).

Type
Research Article
Copyright
© 1982 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benjamin, T. B. 1968 Gravity currents and related phenomena. J. Fluid Mech. 31, 209248.Google Scholar
Britter, R. E. & Simpson, J. E. 1978 Experiments on the dynamics of a gravity current head. J. Fluid Mech. 88, 223240.Google Scholar
Browand, F. K. & Winant, C. D. 1972 Blocking ahead of a cylinder moving in stratified fluid: an experiment. Geophys. Fluid Dyn. 4, 2953.Google Scholar
Fay, J. A. 1969 The spread of oil slicks on a calm sea. In Oil on the Sea (ed. D. P. Hoult). pp. 5363.
Garvine, R. W. & Monk, J. D. 1974 Frontal structure of a river plume. J. Geophys. Res. 79, 22512259.Google Scholar
Hoult, D. P. 1972 Oil spreading on the sea. Ann. Rev. Fluid Mech. 4, 341368.Google Scholar
Huppert, H. E. 1982 The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface. J. Fluid Mech. 121, 4358.Google Scholar
Huppert, H. E. & Simpson, J. E. 1980 The slumping of gravity currents. J. Fluid Mech. 99, 785799.Google Scholar
Klemas, V. & Polis, D. F. 1977 A study of density fronts and their effect on coastal pollutants. Remote Sensing of Environment 6, 95126.Google Scholar
Maxworthy, T. 1972 Experimental and theoretical studies of horizontal jets in a stratified fluid. In Proc. Int. Symp. on Stratified Fluid, Novosibirsk, no. 17.
Maxworthy, T. & Browand, F. K. 1975 Experiments in rotating and stratified flows: oceanographic application. Ann. Rev. Fluid Mech. 7, 273305.Google Scholar
Mcguirk, J. J. & Rodi, W. 1979 Mathematical modelling of three-dimensional heated surface jets. J. Fluid Mech. 95, 609633.Google Scholar
Simpson, J. E. 1972 Effects of the lower boundary on the head of a gravity current. J. Fluid Mech. 53, 759768.Google Scholar
Simpson, J. E., Mansfield, D. A. & Milford, J. R. 1977 Inland penetration of sea-breeze fronts. Q. J. R. Met. Soc. 103, 4776.Google Scholar