Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-20T03:00:40.189Z Has data issue: false hasContentIssue false

Viscous Marangoni migration of a drop in a Poiseuille flow at low surface Péclet numbers

Published online by Cambridge University Press:  28 July 2014

On Shun Pak
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, NJ 08544, USA
Jie Feng
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, NJ 08544, USA
Howard A. Stone*
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, NJ 08544, USA
*
Email address for correspondence: [email protected]

Abstract

The motion of a spherical drop with a bulk-insoluble surfactant immersed in a background flow in the limits of low surface Péclet number and low Reynolds number is investigated. We develop a reciprocal theorem that applies to any prescribed background flow and provide a specific example of an unbounded Poiseuille flow. Analytical formulas for the migration velocity of the drop are obtained perturbatively in powers of the surface Péclet number. We show that the redistribution of surfactant due to the background flow acts to retard the motion of the drop, with the magnitude of this slip velocity being independent of the drop’s position in the Poiseuille flow. Moreover, a surfactant-induced cross-streamline migration of the drop occurs towards the centre of the Poiseuille flow, with its magnitude depending linearly on the distance of the drop from the centre of the Poiseuille flow.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

References

Adamson, A. W. & Gast, A. P. 1997 Physical Chemistry of Surfaces. Wiley.Google Scholar
Baroud, C. N., Gallaire, F. & Dangla, R. 2010 Dynamics of microfluidic droplets. Lab on a Chip 10, 20322045.CrossRefGoogle ScholarPubMed
Borhan, A. & Mao, C. 1992 Effect of surfactants on the motion of drops through circular tubes. Phys. Fluids 4 (12), 26282640.CrossRefGoogle Scholar
Bush, J. W. M. & Hu, D. L. 2006 Walking on water: biolocomotion at the interface. Annu. Rev. Fluid Mech. 38 (1), 339369.CrossRefGoogle Scholar
Chaffey, C. E., Brenner, H. & Mason, S. G. 1965 Particle motions in sheared suspensions. Rheol. Acta 4 (1), 6472.CrossRefGoogle Scholar
Chan, P. C.-H. & Leal, L. G. 1977 A note on the motion of a spherical particle in a general quadratic flow of a second-order fluid. J. Fluid Mech. 82 (3), 549559.CrossRefGoogle Scholar
Chan, P. C.-H. & Leal, L. G. 1979 The motion of a deformable drop in a second-order fluid. J. Fluid Mech. 92 (1), 131170.CrossRefGoogle Scholar
Chisholm, C. D. H. 1976 Group Theoretical Techniques in Quantum Chemistry. Academic Press.Google Scholar
Choudhuri, D. & Raja Sekhar, G. P. 2013 Thermocapillary drift on a spherical drop in a viscous fluid. Phys. Fluids 25, 043104.CrossRefGoogle Scholar
Cox, R. G. & Brenner, H. 1968 The lateral migration of solid particles in Poiseuille flow—I Theory. Chem. Engng Sci. 23 (2), 147173.CrossRefGoogle Scholar
Di Carlo, D., Irimia, D., Tompkins, R. G. & Toner, M. 2007 Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl Acad. Sci. USA 104 (48), 1889218897.Google ScholarPubMed
Hanna, J. A. & Vlahovska, P. M. 2010 Surfactant-induced migration of a spherical drop in Stokes flow. Phys. Fluids 22, 013102.CrossRefGoogle Scholar
Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media. Noordhoff International Publishing.Google Scholar
Hetsroni, G. & Haber, S. 1970 The flow in and around a droplet or bubble submerged in an unbound arbitrary velocity field. Rheol. Acta 9, 488496.CrossRefGoogle Scholar
Ho, B. P. & Leal, L. G. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65 (2), 365400.CrossRefGoogle Scholar
Johnson, R. A. & Borhan, A. 1999 Effect of insoluble surfactants on the pressure-driven motion of a drop in a tube in the limit of high surface coverage. J. Colloid Interface Sci. 218 (1), 184200.CrossRefGoogle Scholar
Lauga, E. & Davis, A. M. J. 2012 Viscous Marangoni propulsion. J. Fluid Mech. 705, 120133.CrossRefGoogle Scholar
Leal, L. G. 1980 Particle motions in a viscous fluid. Annu. Rev. Fluid Mech. 12 (1), 435476.CrossRefGoogle Scholar
Leal, L. G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press.Google Scholar
Levich, V. G. 1962 Physicochemical Hydrodynamics. Prentice-Hall.Google Scholar
Masoud, H. & Stone, H. A. 2014 A reciprocal theorem for Marangoni propulsion. J. Fluid Mech. 741, R4.CrossRefGoogle Scholar
Nadim, A., Haj-Hariri, H. & Borhan, A. 1990 Thermocapillary migration of slightly deformed droplets. Part. Sci. Technol. 8, 191198.CrossRefGoogle Scholar
Nadim, A. & Stone, H. A. 1991 The motion of small particles and droplets in quadratic flows. Stud. Appl. Maths 85, 5373.CrossRefGoogle Scholar
Narsimhan, V. & Shaqfeh, E. S. G. 2010 Lateral drift and concentration instability in a suspension of bubbles induced by Marangoni stresses at zero Reynolds number. Phys. Fluids 22 (10), 101702.CrossRefGoogle Scholar
Palaniappan, D., Nigam, S. D., Amaranath, T. & Usha, R. 1992 Lamb’s solution of Stokes’s equations: a sphere theorem. Q. J. Mech. Appl. Maths 45, 4756.CrossRefGoogle Scholar
Pawar, Y. & Stebe, K. J. 1996 Marangoni effects on drop deformation in an extensional flow: the role of surfactant physical chemistry. I. Insoluble surfactants. Phys. Fluids 8 (7), 17381751.CrossRefGoogle Scholar
Rallison, J. M. 1978 Note on the Faxén relations for a particle in Stokes flow. J. Fluid Mech. 88, 529533.CrossRefGoogle Scholar
Schonberg, J. A. & Hinch, E. J. 1989 Inertial migration of a sphere in Poiseuille flow. J. Fluid Mech. 203, 517524.CrossRefGoogle Scholar
Segre, G. & Silberberg, A. 1962a Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams. J. Fluid Mech. 14 (1), 115135.CrossRefGoogle Scholar
Segre, G. & Silberberg, A. 1962b Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 2. Experimental results and interpretation. J. Fluid Mech. 14 (1), 136157.CrossRefGoogle Scholar
Stan, C. A., Ellerbee, A. K., Guglielmini, L., Stone, H. A. & Whitesides, G. M. 2013 The magnitude of lift forces acting on drops and bubbles in liquids flowing inside microchannels. Lab on a Chip 13 (3), 365376.CrossRefGoogle ScholarPubMed
Stone, H. A. 1990 A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A 2, 111112.CrossRefGoogle Scholar
Stone, H. A. & Samuel, A. D. T. 1996 Propulsion of microorganisms by surface distortions. Phys. Rev. Lett. 77, 41024104.CrossRefGoogle ScholarPubMed
Subramanian, R. S. & Balasubramaniam, R. 2001 The Motion of Bubbles and Drops in Reduced Gravity. Cambridge University Press.Google Scholar
Wohl, P. R. & Rubinow, S. I. 1974 The transverse force on a drop in an unbounded parabolic flow. J. Fluid Mech. 62 (1), 185207.CrossRefGoogle Scholar
Young, N. O., Goldstein, J. S. & Block, M. J. 1959 The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6, 350356.CrossRefGoogle Scholar