Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-19T12:05:46.313Z Has data issue: false hasContentIssue false

Viscous forces on a circular cylinder in orbital flow at low Keulegan—Carpenter numbers

Published online by Cambridge University Press:  26 April 2006

P. K. Stansby
Affiliation:
Department of Engineering, Simon Building, The University. Manchester M13 9PL, UK
P. A. Smith
Affiliation:
Paul Scherrer Institute, Wurenlingen, CH-5232 Villigen PSI, Switzerland

Abstract

The flow structures giving rise to the force on a circular cylinder in uniform, circular, orbital flows have been investigated for keulegan—Carpenter numbers (K) less than 2 and a Stokes parameter (β) of 483 using the random-vortex method. Comparisons with analysis using the method of inner and outer expansions are made and good agreement is found for K = 0.1. For higher K-values, the viscous force (the difference between the total force and the potential-flow force) acts mainly in opposition to the potential-flow force causing a substantial reduction in total force, in keeping with experimental measurements. Significant separation does not occur at K ≤ 1.5 and vorticity organizes itself asymmetrically about the line through the cylinder centre parallel to the incident velocity vector. Vorticity of one sense of rotation remains close to the half-surface lagging the velocity vector, while an area of vorticity of the opposite sense wraps itself around the cylinder. The net circulation in the flow (the circulation within a path encircling the cylinder at a large radius) is zero. Vortex shedding occurs at K > 1.5. Viscous forces due to non-uniform, orbital flows around a horizontal cylinder beneath waves were similar although vortex shedding tended to occur at lower K-values.

Type
Research Article
Copyright
© 1991 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alving, A. E., Smits, A. J. & Watmuff, J. H. 1990 J. Fluid Mech. 211, 529.
Barlow, R. S. & Johnston, J. P. 1988 J. Fluid Mech. 191, 137.
Bradshaw, P. 1967 J. Fluid Mech. 29, 625.
Bradshaw, P. 1971 AGARD Conf. 30, 241.
Bradshaw, P. 1972 Aero. J. 76, 403.
Bradshaw, P. 1973 AGARDograph 169.
Bradshaw, P. 1974 J. Fluid Mech. 63, 449.
Bradshaw, P. 1988 Effects of extra rates of strain — review. Zoran Zaric Memorial Sem., Dubrovnik. Hemisphere.
Bradshaw, P. & Ferriss, D. H. 1965 NPL Aero. Rep. 1145.
Bradshaw, P., Ferriss, D. H. & Atwell, N. P. 1967 J. Fluid Mech. 28, 593.
Bradshaw, P. & Unsworth, K. 1974 I.C. Aero. Rep. 74–02.
Brederode, V. De & Bradshaw, P. 1974 I.C. Aero. Rep. 74–03.
Castro, I. P. & Bradshaw, P. 1976 J. Fluid Mech. 73, 165.
Cebeci, T. & Smith, A. M. O. 1974 Analysis of Turbulent Boundary Layers. Academic.
Coles, D. E. 1962 Rand Rep. R-403-PR.
Crabbe, R. S. 1977 A contribution to the study of uniformly diverging and converging turbulent boundary layers. Ph.D. dissertation, Mech. Engng, McGill University
Cutler, A. D. & Johnston, J. P. 1989 J. Fluid Mech. 200, 367.
Daly, B. J. & Harlow, F. H. 1970 Phys. Fluids 13, 2634.
Erm, L. P. 1988 Low Reynolds number turbulent boundary layers. Ph.D. thesis, Mech. Engng, University of Melbourne.
Galbraith, R. A. M. & Head, M. R. 1975 Aero. Q. 26, 133.
Gibson, M. M., Verriopoulos, C. A. & Vlachos, N. S. 1984 Expts Fluids 2, 17.
Gillis, J. C. & Johnston, J. P. 1983 J. Fluid Mech. 135, 123.
Hanjalic, K. & Launder, B. E. 1972 J. Fluid Mech. 52, 609.
Head, M. R. 1958 Aero. Res. Counc. R & M 3152.
Head, M. R. 1976 Aero. Q. 27, 270.
Head, M. R. & Patel, V. C. 1968 Aero. Res. Counc. R & M 3643.
Head, M. R. & Prahlad, T. S. 1974 Aero. Q. 25, 293.
Hoffmann, P. H., Muck, K. C. & Bradshaw, P. 1985 J. Fluid Mech. 161, 371.
Hunt, I. A. & Joubert, P. N. 1979 J. Fluid Mech. 91, 633.
Hunt, J. C. R., Spalart, P. R. & Mansour, N. N. 1987 Proc. Summer Prog., Center for Turbulence Research, Stanford.
Inman, P. N. & Bradshaw, P. 1981 AIAA J. 19, 653.
Kehl, A. 1943 Ing. Archiv. 13, 293.
Kolmogorov, A. N. 1941 C.R. Acad. Sci. URSS 30, 301.
Kuo, A. Y. & Corrsin, S. 1971 J. Fluid Mech. 50, 285.
Ligrani, P. M. & Bradshaw, P. 1987 Expts Fluids 5, 407.
Mehta, R. D. & Bradshaw, P. 1979 Aero. J. 433.
Muck, K. C., Hoffmann, P. H. & Bradshaw, P. 1985 J. Fluid Mech. 161, 347.
Murlis, J. 1975 The structure of a turbulent boundary layer at low Reynolds number. Ph.D. thesis, Imperial College, London.
Murlis, J., Tsai, H. M. & Bradshaw, P. 1982 J. Fluid Mech. 122, 13.
Patel, V. C. 1965 J. Fluid Mech. 23, 185.
Patel, V. C. & Baek, J. H. 1987 AIAA. J. 25, 550.
Patel, V. C., Nakayama, A. & Damian, R. 1974 J. Fluid Mech. 63, 345.
Perry, A. E. 1982 Hot-Wire Anemometry. Oxford University Press.
Perry, A. E. & Chong, M. S. 1982 J. Fluid Mech. 119, 173.
Perry, A. E., Henbest, S. & Chong, M. S. 1986 J. Fluid Mech. 165, 163.
Perry, A. E., Lim, K. L. & Henbest, S. M. 1987 J. Fluid Mech. 177, 437.
Ramaprian, B. R. & Shivaprasad, B. G. 1987 J. Fluid Mech. 85, 273.
Saddoughi, S. G. 1988 Experimental studies of the effects of streamline divergence on developing turbulent boundary layers. Ph.D. thesis, Mech. Engng, University of Melbourne.
Saddoughi, S. G. 1989 Some selected contributions from Peter N. Joubert and his students to the study of perturbed turbulent boundary layers. 10th Australasian Fluid Mech. Conf. University of Melbourne.
Saddoughi, S. G., Erm, L. P. & Joubert, P. N. 1985 The effects of streamline divergence on developing turbulent boundary layers. Proc. Osaka Intl Colloq. Ship Visc. Flow, pp. 11. Osaka University and University of Osaka Prefecture, Japan.
Shiloh, K., Shivaprasad, B. G. & Simpson, R. L. 1981 J. Fluid Mech. 113, 75.
Sjolander, S. A. 1980 Eddy viscosity in two-dimensional and laterally strained boundary layers. Ph.D. dissertation, University of Cambridge.
Smits, A. J., Eaton, J. A. & Bradshaw, P. 1979a J. Fluid Mech. 94, 243.
Smits, A. J. & Joubert, P. N. 1982 J. Ship Res. 26, 135.
Smits, A. J. & Wood, D. H. 1985 Ann. Rev. Fluid Mech. 17, 312.
Smits, A. J., Young, S. T. B. & Bradshaw, P. 1979b J. Fluid Mech. 94, 209.
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.
Watmuff, J. H., Witt, H. T. & Joubert, P. N. 1985 J. Fluid Mech. 157, 405.
Willmarth, W. W. & Bogar, J. B. 1977 Phys. Fluids Suppl. 20, S9.
Willmarth, W. W. & Sharma, L. K. 1984 J. Fluid Mech. 142, 121.
Wood, D. H. & Bradshaw, P. 1982 J. Fluid Mech. 122, 57.