Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T19:58:27.279Z Has data issue: false hasContentIssue false

Viscous drops on a layer of the same fluid: from sinking, wedging and spreading to their long-time evolution

Published online by Cambridge University Press:  16 March 2018

Nico Bergemann
Affiliation:
School of Mathematics and Manchester Centre for Nonlinear Dynamics, The University of Manchester, Oxford Road, Manchester M13 9PL, UK Manchester Centre for Nonlinear Dynamics and School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
Anne Juel
Affiliation:
Manchester Centre for Nonlinear Dynamics and School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
Matthias Heil*
Affiliation:
School of Mathematics and Manchester Centre for Nonlinear Dynamics, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
*
Email address for correspondence: [email protected]

Abstract

We study the axisymmetric spreading of drops deposited on a pre-existing horizontal layer of the same viscous fluid. Using a combination of experiments, numerical modelling based on the axisymmetric free-surface Navier–Stokes equations and scaling analyses, we explore the drops’ behaviour in a regime where the flow is driven by gravitational and/or capillary forces while inertial effects are small. We find that during the early stages of the drops’ evolution there are three distinct spreading behaviours depending on the thickness of the liquid layer. For thin layers the fluid ahead of a clearly defined spreading front is at rest and the overall behaviour resembles that of a drop spreading on a dry substrate. For thicker films, the spreading is characterised by an advancing wedge which is sustained by fluid flow from the drop into the layer. Finally, for thick layers the drop sinks into the layer, accompanied by significant flow within the layer. As the drop keeps spreading, the evolution of its shape becomes self-similar, with a power-law behaviour for its radius and its excess height above the undisturbed fluid layer. We employ lubrication theory to analyse the drop’s ultimate long-term behaviour and show that all drops ultimately enter an asymptotic regime which is reached when their excess height falls below the thickness of the undisturbed layer.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Backholm, M., Benzaquen, M., Salez, T., Raphaël, E. & Dalnoki-Veress, K. 2014 Capillary levelling of a cylindrical hole in a viscous film. Soft Matt. 10 (15), 25502558.Google Scholar
Benzaquen, M., Fowler, P., Jubin, L., Salez, T., Dalnoki-Veress, K. & Raphael, E. 2014 Approach to universal self-similar attractor for the levelling of thin liquid films. Soft Matt. 10, 86088614.Google Scholar
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81 (2), 739803.Google Scholar
Bradski, G. & Kaehler, A. 2008 Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly Media, Inc.Google Scholar
Cazabat, A. M. & Cohen-Stuart, M. A. 1986 Dynamics of wetting: effects of surface roughness. J. Phys. Chem. 90 (22), 58455849.Google Scholar
Chebbi, R. 1999 Capillary spreading of liquid drops on prewetted solid surfaces. J. Colloid Interface Sci. 211 (2), 230237.Google Scholar
Cormier, S. L., McGraw, J. D., Salez, T., Raphaël, E. & Dalnoki-Veress, K. 2012 Beyond Tanner’s law: crossover between spreading regimes of a viscous droplet on an identical film. Phys. Rev. Lett. 109 (15), 154501.Google Scholar
Cox, R. G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169194.Google Scholar
de Gennes, P.-G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57 (3), 827.Google Scholar
Derjaguin, B. V. C. R. 1943 Thickness of liquid layer adhering to walls of vessels on their emptying and the theory of photo-and motion-picture film coating. C. R. (Dokl.) Acad. Sci. URSS 39, 1316.Google Scholar
Donea, J., Giuliani, S. & Halleux, J. P. 1982 An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions. Comput. Meth. Appl. Mech. Engng 33 (1), 689723.Google Scholar
Edwards, W. P. 2000 The Science of Sugar Confectionery. Royal Society of Chemistry.Google Scholar
Fox, T. G. Jr. & Flory, P. J. 1948 Viscosity-molecular weight and viscosity–temperature relationships for polystyrene and polyisobutylene. J. Am. Chem. Soc. 70, 23842395.Google Scholar
Gaver, D. P., Halpern, D., Jensen, O. E. & Grotberg, J. B. 1996 The steady motion of a semi-infinite bubble through a flexible walled channel. J. Fluid Mech. 319, 2556.Google Scholar
Godoi, F. C., Prakash, S. & Bhandari, B. R. 2016 3D printing technologies applied for food design: status and prospects. J. Food Engng 179, 4454.Google Scholar
Hardy, W. B. 1919 The spreading of fluids on glass. Phil. Mag. 38, 4955.Google Scholar
Hazel, A. L., Heil, M., Waters, S. L. & Oliver, J. M. 2012 On the liquid lining in fluid-conveying curved tubes. J. Fluid Mech. 705, 213233.Google Scholar
Heil, M. & Hazel, A. L. 2006 oomph-lib – an object-oriented multi-physics finite-element library. In Fluid–Structure Interaction (ed. Schäfer, M. & Bungartz, H. J.), pp. 1949. Springer; oomph-lib is available as open-source software at http://www.oomph-lib.org.Google Scholar
Heine, D. R., Grest, G. S. & Webb, E. B. III 2003 Spreading dynamics of polymer nanodroplets. Phys. Rev. E 68, 061603.Google Scholar
Hewitt, I. J., Balmforth, N. J. & Mcelwaine, J. N. 2012 Granular and fluid washboards. J. Fluid Mech. 692, 446463.Google Scholar
Hewitt, R. E., Hazel, A. L., Clarke, R. J. & Denier, J. P. 2011 Unsteady flow in a rotating torus after a sudden change in rotation rate. J. Fluid Mech. 688, 88119.Google Scholar
Hocking, L. M. 1983 The spreading of a thin drop by gravity and capillarity. Q. J. Mech. Appl. Maths 36 (1), 5569.Google Scholar
Huppert, H. E. 1982 The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface. J. Fluid Mech. 121, 4358.Google Scholar
Kalinin, V. V. & Starov, V. M. 1986 Viscous spreading of drops on a wetting surface. Colloid J. USSR 48 (5), 767771.Google Scholar
Kavehpour, H. P., Ovryn, B. & McKinley, G. H. 2003 Microscopic and macroscopic structure of the precursor layer in spreading viscous drops. Phys. Rev. Lett. 91 (19), 196104.Google Scholar
King, J. R. 1990 Exact similarity solutions to some nonlinear diffusion equations. J. Phys. A 23 (16), 3681.Google Scholar
King, J. R. 2001 Thin-film flows and high-order degenerate parabolic equations. In IUTAM Symposium on Free Surface Flows (ed. King, A. C. & Shikmurzaev, Y. D.), pp. 718. Kluwer.Google Scholar
Kwok, D. Y., Cheung, L. K., Park, C. B. & Neumann, A. W. 1998 Study on the surface tensions of polymer melts using axisymmetric drop shape analysis. Polym. Engng Sci. 38 (5), 757764.Google Scholar
Landau, L. & Levich, B. 1942 Dragging of a liquid by a moving plate. Acta Physicochim. URSS 17, 4254.Google Scholar
Lees, R. 2012 Sugar Confectionery and Chocolate Manufacture. Springer Science & Business Media.Google Scholar
Lopez, J., Miller, C. A. & Ruckenstein, E. 1976 Spreading kinetics of liquid drops on solids. J. Colloid Interface Sci. 56 (3), 460468.Google Scholar
Maleki, M., Reyssat, M., Restagno, F., Quéré, D. & Clanet, C. 2011 Landau–Levich menisci. J. Colloid Interface Sci. 354 (1), 359363.Google Scholar
Middleman, S. 1995 Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops. Academic.Google Scholar
Milchev, A. & Binder, K. 2002 Droplet spreading: A Monte Carlo test of Tanner’s law. J. Chem. Phys. 116, 76917694.Google Scholar
Montañez-Soto, J. L., Machuca, M. A. V., González, J. V., Nicanor, A. & González-Cruz, L. 2013 Influence of the composition in the rheological behavior of high fructose syrups. Adv. Biores. 4 (2), 7782.Google Scholar
Nalwa, V. S. & Binford, T. O. 1986 On detecting edges. Pattern Anal. Mach. Intell., IEEE Trans. PAMI‐8 (6), 699714.Google Scholar
Patnode, W. & Scheiber, W. J. 1939 The density, thermal expansion, vapor pressure, and refractive index of styrene, and the density and thermal expansion of polystyrene. J. Am. Chem. Soc. 61 (12), 34493451.Google Scholar
Pierce, F., Perahia, D. & Grest, G. S. 2009 Spreading of liquid droplets on permeable polymeric surfaces. Europhys. Lett. 86 (6), 64004.Google Scholar
Pihler-Puzović, D., Juel, A., Peng, G. G., Lister, J. R. & Heil, M. 2015 Displacement flows under elastic membranes. Part 1: Experiments and direct numerical simulations. J. Fluid Mech. 784, 487511.Google Scholar
Poggio, T., Torre, V. & Koch, C. 1985 Computational vision and regularization theory. Nature 317 (6035), 314319.Google Scholar
Poggio, T., Voorhees, H. & Yuille, A. 1988 A regularized solution to edge detection. J. Complexity 4 (2), 106123.Google Scholar
Popescu, M. N., Oshanin, G., Dietrich, S. & Cazabat, A. M. 2012 Precursor films in wetting phenomena. J. Phys.: Cond. Matt. 24 (24), 243102.Google Scholar
Quincke, G. 1877 Über den Randwinkel und die Ausbreitung von Flüssigkeiten auf festen Körpern. Ann. Phys. 238 (10), 145194.Google Scholar
Salez, T., McGraw, J. D., Bäumchen, O., Dalnoki-Veress, K. & Raphaël, E. 2012 Capillary-driven flow induced by a stepped perturbation atop a viscous film. Phys. Fluids 24 (10), 102111.Google Scholar
Samsonov, V. M. 2011 On computer simulation of droplet spreading. Curr. Opin. Colloid Interface Sci. 16 (4), 303309.Google Scholar
Sani, R. L. & Gresho, P. M. 2000 Incompressible Flow and the Finite Element Method. Wiley.Google Scholar
Shewchuk, J. R. 1996 Triangle: engineering a 2D quality mesh generator and delaunay triangulator. In Applied Computational Geometry: Towards Geometric Engineering (ed. Lin, M. C. & Manocha, D.), Lecture Notes in Computer Science, vol. 1148, pp. 203222. Springer; from the First ACM Workshop on Applied Computational Geometry.Google Scholar
Snoeijer, J. H. & Andreotti, B. 2013 Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269292.Google Scholar
Stillwagon, I. E. & Larson, R. G. 1988 Fundamentals of topographic substrate leveling. J. Appl. Phys. 63, 52515258.Google Scholar
Tanner, L. H. 1979 The spreading of silicone oil drops on horizontal surfaces. J. Phys. D 12 (9), 1473.Google Scholar
Taylor, C. & Hood, P. 1973 A numerical solution of the Navier–Stokes equations using the finite element technique. Comput. Fluids 1 (1), 73100.Google Scholar
Thompson, A. B., Tipton, C., Juel, A., Hazel, A. L. & Dowling, M. 2014 Sequential deposition of overlapping droplets to form a liquid line. J. Fluid Mech. 761, 261281.Google Scholar
Voinov, O. V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11 (5), 714721.Google Scholar
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159192.Google Scholar
Zienkiewicz, O. C. & Zhu, J. Z. 1992 The superconvergent patch recovery and a posteriori error estimates. Part 2: error estimates and adaptivity. Intl J. Numer. Meth. Engng 33 (7), 13651382.Google Scholar