Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T16:02:16.581Z Has data issue: false hasContentIssue false

Viscous constraints on microorganism approach and interaction

Published online by Cambridge University Press:  31 July 2018

Mehdi Jabbarzadeh
Affiliation:
Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
Henry Chien Fu*
Affiliation:
Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
*
Email address for correspondence: [email protected]

Abstract

Microorganisms must approach other suspended organisms or particles in order to interact with them during a host of life processes including feeding and mating. Microorganisms live at low Reynolds number where viscosity dominates and strongly affects the hydrodynamics of swimmer and nearby cells and objects. Viscous hydrodynamics makes it difficult for two surfaces to approach closely at low Reynolds numbers. Nonetheless, it is observed that microorganisms in fluid are still able to approach closely enough to interact with each other or suspended particles. Here, we study how the physical constraints provided by viscous hydrodynamics affects the feasibility of direct approach of flagellated and ciliated microorganisms to targets of different sizes. We find that it is feasible for singly flagellated swimmers to approach targets that are the same size or bigger. On the other hand, for squirmers, the feasibility of approach depends on near-field flows that can be controlled by the details of their swimming strokes.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. & Walter, P. 2002 Molecular Biology of the Cell. Garland Science.Google Scholar
Balazs, A. C., Bhattacharya, A., Tripathi, A. & Shum, H. 2014 Designing bioinspired artificial cilia to regulate particle–surface interactions. J. Phys. Chem. Lett. 5 (10), 16911700.Google Scholar
Batchelor, G. K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41 (3), 545570.Google Scholar
Blake, J. R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46 (1), 199208.Google Scholar
Braga, R. M., Dourado, M. N. & Araújo, W. L. 2016 Microbial interactions: ecology in a molecular perspective. Brazilian J. Microbiol. 47, 8698.Google Scholar
Brenner, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Engng Sci. 16 (3–4), 242251.Google Scholar
Constantino, M. A., Jabbarzadeh, M., Fu, H. C. & Bansil, R. 2016 Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape. Sci. Adv. 2 (11), e1601661.Google Scholar
Cox, R. G. & Brenner, H. 1967 The slow motion of a sphere through a viscous fluid towards a plane surfaceii small gap widths, including inertial effects. Chem. Engng Sci. 22 (12), 17531777.Google Scholar
Desai, N., Shaik, V. A. & Ardekani, A. M. 2018 Hydrodynamics-mediated trapping of micro-swimmers near drops. Soft Matt. 14 (2), 264278.Google Scholar
Dunavant, D. A. 1985 High degree efficient symmetrical Gaussian quadrature rules for the triangle. Intl J. Numer. Methods Engng 21 (6), 11291148.Google Scholar
Griffiths, A. J. F., Miller, J. H., Suzuki, D. T., Lewontin, R. C., Gelbart, W. M. & others 2000 Transcription: an overview of gene regulation in eukaryotes. In An Introduction to Genetic Analysis, 7th edn. WH Freeman.Google Scholar
Grossart, H. P., Kiørboe, T., Tang, K. W., Allgaier, M., Yam, E. M. & Ploug, H. 2006 Interactions between marine snow and heterotrophic bacteria: aggregate formation and microbial dynamics. Aquatic Microbial Ecol. 42, 1926.Google Scholar
Hansen, B., Bjornsen, P. K. & Hansen, P. J. 1994 The size ratio between planktonic predators and their prey. Limnol. Oceanogr. 39 (2), 395403.Google Scholar
Higdon, J. J. L. 1979 A hydrodynamic analysis of flagellar propulsion. J. Fluid Mech. 90 (4), 685711.Google Scholar
Hyon, Y., Powers, T. R., Stocker, R., Fu, H. C. & others 2012 The wiggling trajectories of bacteria. J. Fluid Mech. 705, 5876.Google Scholar
Ishikawa, T., Simmonds, M. P. & Pedley, T. J. 2006 Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119160.Google Scholar
Ishimoto, K., Cosson, J. & Gaffney, E. A. 2016 A simulation study of sperm motility hydrodynamics near fish eggs and spheres. J. Theor. Biol. 389, 187197.Google Scholar
Jabbarzadeh, M., Hyon, Y. & Fu, H. C. 2014 Swimming fluctuations of micro-organisms due to heterogeneous microstructure. Phys. Rev. E 90 (4), 043021.Google Scholar
Jeanneret, R., Pushkin, D. O., Kantsler, V. & Polin, M. 2016 Entrainment dominates the interaction of microalgae with micron-sized objects. Nature Commun. 7, 12518.Google Scholar
Johnke, J., Boenigk, J., Harms, H. & Chatzinotas, A. 2017 Killing the killer: predation between protists and predatory bacteria. FEMS Microbiol. Lett. 364 (9), fnx089.Google Scholar
Kiørboe, T. 2007 Mate finding, mating, and population dynamics in a planktonic copepod Oithona davisae: there are too few males. Limnol. Oceanogr. 52 (4), 15111522.Google Scholar
Kiørboe, T. 2016 Fluid dynamic constraints on resource acquisition in small pelagic organisms. European Phys. J. Special Topics 225 (4), 669683.Google Scholar
Kiørboe, T., Andersen, A., Langlois, V. J., Jakobsen, H. H. & Bohr, T. 2009 Mechanisms and feasibility of prey capture in ambush-feeding zooplankton. Proc. Natl Acad. Sci. USA 106 (30), 1239412399.Google Scholar
Kiørboe, T., Jiang, H., Gonçalves, R. J., Nielsen, L. T. & Wadhwa, N. 2014 Flow disturbances generated by feeding and swimming zooplankton. Proc. Natl Acad. Sci. USA 111 (32), 1173811743.Google Scholar
Kiørboe, T., Tang, K., Grossart, H.-P. & Ploug, H. 2003 Dynamics of microbial communities on marine snow aggregates: colonization, growth, detachment, and grazing mortality of attached bacteria. Appl. Environ. Microbiol. 69 (6), 30363047.Google Scholar
Koehl, M. A. R. & Strickier, J. R. 1981 Copepod feeding currents: food capture at low Reynolds number. Limnol. Oceanogr. 26 (6), 10621073.Google Scholar
Lauga, E. & Powers, T. R. 2009 The hydrodynamics of swimming microorganisms. Rep. Progr. Phys. 72 (9), 096601.Google Scholar
Li, G., Ostace, A. & Ardekani, A. M. 2016 Hydrodynamic interaction of swimming organisms in an inertial regime. Phys. Rev. E 94 (5), 053104.Google Scholar
Martindale, J. D., Jabbarzadeh, M. & Fu, H. C. 2016 Choice of computational method for swimming and pumping with nonslender helical filaments at low Reynolds number. Phys. Fluids 28 (2), 021901.Google Scholar
Molina, J. J., Nakayama, Y. & Yamamoto, R. 2013 Hydrodynamic interactions of self-propelled swimmers. Soft Matt. 9 (19), 49234936.Google Scholar
Moreno, R. D., Laserre, A., Barros, C. & others 2011 Protease activity involvement in the passage of mammalian sperm through the zona pellucida. Biol. Res. 44 (2), 145150.Google Scholar
Papavassiliou, D. & Alexander, G. P. 2017 Exact solutions for hydrodynamic interactions of two squirming spheres. J. Fluid Mech. 813, 618646.Google Scholar
Phan-Thien, N., Tran-Cong, T. & Ramia, M. 1987 A boundary-element analysis of flagellar propulsion. J. Fluid Mech. 184, 533549.Google Scholar
Potomkin, M., Gyrya, V., Aranson, I. & Berlyand, L. 2013 Collision of microswimmers in a viscous fluid. Phys. Rev. E 87 (5), 053005.Google Scholar
Pozrikidis, C. 2002 A Practical Guide to Boundary Element Methods with the Software Library BEMLIB. CRC Press.Google Scholar
Ramia, M., Tullock, D. L. & Phan-Thien, N. 1993 The role of hydrodynamic interaction in the locomotion of microorganisms. Biophys. J. 65 (2), 755778.Google Scholar
Riisgård, H. U. & Larsen, P. S. 2010 Particle capture mechanisms in suspension-feeding invertebrates. Marine Ecol. Progr. Ser. 418, 255293.Google Scholar
Shaik, V. A. & Ardekani, A. M. 2017 Motion of a model swimmer near a weakly deforming interface. J. Fluid Mech. 824, 4273.Google Scholar
Smith, D. J. 2009 A boundary element regularized Stokeslet method applied to cilia- and flagella-driven flow. Proc. R. Soc. Lond. A 465, 36053626.Google Scholar
Sommer, U., Charalampous, E., Genitsaris, S. & Moustaka-Gouni, M. 2017 Benefits, costs and taxonomic distribution of marine phytoplankton body size. J. Plankton Res. 39 (3), 494508.Google Scholar
Spagnolie, S. E., Moreno-Flores, G. R., Bartolo, D. & Lauga, E. 2015 Geometric capture and escape of a microswimmer colliding with an obstacle. Soft Matt. 11 (17), 33963411.Google Scholar
Stimson, M. & Jeffery, G. B. 1926 The motion of two spheres in a viscous fluid. Proc. R. Soc. Lond. A 111 (757), 110116.Google Scholar
Strickler, J. R. 1998 Observing free-swimming copepods mating. Phil. Trans. R. Soc. Lond. B 353 (1369), 671680.Google Scholar
Theers, M., Westphal, E., Gompper, G. & Winkler, R. G. 2016 Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit. Soft Matt. 12 (35), 73727385.Google Scholar