Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-18T15:59:39.541Z Has data issue: false hasContentIssue false

Violent expiratory events: on coughing and sneezing

Published online by Cambridge University Press:  24 March 2014

Lydia Bourouiba*
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02130, USA Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02130, USA
Eline Dehandschoewercker
Affiliation:
PMMH - ESPCI, O207 10, rue Vauquelin, 75005 Paris, France
John W. M. Bush
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02130, USA
*
Email address for correspondence: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Violent respiratory events such as coughs and sneezes play a key role in transferring respiratory diseases between infectious and susceptible individuals. We present the results of a combined experimental and theoretical investigation of the fluid dynamics of such violent expiratory events. Direct observation of sneezing and coughing events reveals that such flows are multiphase turbulent buoyant clouds with suspended droplets of various sizes. Our observations guide the development of an accompanying theoretical model of pathogen-bearing droplets interacting with a turbulent buoyant momentum puff. We develop in turn discrete and continuous models of droplet fallout from the cloud in order to predict the range of pathogens. According to the discrete fallout model droplets remain suspended in the cloud until their settling speed matches that of the decelerating cloud. A continuous fallout model is developed by adapting models of sedimentation from turbulent fluids. The predictions of our theoretical models are tested against data gathered from a series of analogue experiments in which a particle-laden cloud is ejected into a relatively dense ambient. Our study highlights the importance of the multiphase nature of respiratory clouds, specifically the suspension of the smallest drops by circulation within the cloud, in extending the range of respiratory pathogens.

Type
Papers
Copyright
© 2014 Cambridge University Press 

References

Blanchette, F. A.2003 Sedimentation in a stratified ambient. PhD thesis, MIT, Cambridge.Google Scholar
Bourouiba, L. & Bush, J. W. M. 2012 Drops and bubbles. In Handbook of Environmental Fluid Dynamics Volume One: Overview and Fundamentals Taylor & Francis.Google Scholar
Bush, J. W. M., Thurber, B. A. & Blanchette, F. 2003 Particle clouds in homogeneous and stratified environments. J. Fluid Mech. 489, 2954.CrossRefGoogle Scholar
Cardoso, S. S. S. & Woods, A. W. 1993 Mixing by a turbulent plume in a confined stratified region. J. Fluid Mech. 250, 277305.Google Scholar
Clark, R. P. & de Calcina-Goff, M. L. 2009 Some aspects of the airborne transmission of infection. J. R. Soc. Interface 6, S767S782.Google Scholar
Clarke, J. C., Bush, A. B. G. & Bush, J. W. M. 2009 Freshwater discharge, sediment transport, and modeled climate impacts of the final drainage of glacial lake Agassiz. J. Climate 22, 21612180.CrossRefGoogle Scholar
Crowder, T. M., Rosati, J. A., Schroeter, J. D., Hickey, A. J. & Martonen, T. B. 2001 Fundamental effects of particle morphology on lung delivery: predictions of Stokes’ law and the particular relevance to dry powder inhaler formulation and development. Pharm. Res. 19, 239245.Google Scholar
Cunningham, E. 1910 On the velocity of steady fall of spherical particles through fluid medium. Proc. R. Soc. Lond. A 83 (563), 357365.Google Scholar
Duguid, J. P. 1945 The numbers and the sites of origin of the droplets expelled during expiratory activities. Edinburgh Med. J. LII (II), 385401.Google Scholar
Duguid, J. P. 1946 The size and the duration of air-carriage of respiratory droplets and droplet-nuclei. J. Hyg. 44 (6), 471479.Google ScholarPubMed
Edwards, D. A., Ben-Jebria, A. & Langer, R. 1998 Recent advances in pulmonary drug delivery using large, porous inhaled particles. J. Appl. Physiol. 85, 379385.Google Scholar
Ghosh, S., Dávila, J., Hunt, J., Srdic, A., Fernando, H. & Jonas, P. 2005 How turbulence enhances coalescence of settling particles with applications to rain in clouds. Proc. R. Soc. A: Math. Phys. Engng 461 (2062), 30593088.CrossRefGoogle Scholar
Gonnermann, H. M. & Manga, M. 2007 The fluid mechanics inside a volcano. 321356.CrossRefGoogle Scholar
Gupta, J. K., Lin, C. H. & Chen, Q. 2009 Flow dynamics and characterization of a cough. Indoor Air 19, 517525.Google Scholar
Hinds, W. C. 1999 Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. John Wiley & Sons, Inc..Google Scholar
Holterman, H. J.2003 Kinetics and evaporation of water drops in air. Tech. Rep. IMAG Report 2003, Wageningen, Netherlands.Google Scholar
Höppe, P. 1981 Temperatures of expired air under varying climatic conditions. Intl J. Biometeorol. 25, 127132.CrossRefGoogle Scholar
Hunt, J. C. R., Delfos, R., Eames, I. & Perkins, R. J. 2007 Vortices, complex flows and inertial particles. Flow Turbul. Combust. 79, 207234.CrossRefGoogle Scholar
Hunt, G. R. & Kaye, N. G. 2001 Virtual origin correction for lazy turbulent plumes. J. Fluid Mech. 435, 377396.CrossRefGoogle Scholar
IMF/World Bank, 2006 Press briefing: Avian flu. In Proc. IMF/World Bank Annual Meetings Suntec.Google Scholar
Johnson, G., Morawska, L., Ristovski, Z., Hargreaves, M., Mengersen, K., Chao, C., Wan, M., Li, Y., Xie, X., Katoshevski, D. & Corbett, S. 2011 Modality of human expired aerosol size distributions. J. Aerosol Sci. 42, 839851.Google Scholar
Jonassen, D. R., Settles, G. S. & Tronosky, M. D. 2006 Schlieren PIV for turbulent flows. Opt. Lasers Engng 44, 190207.CrossRefGoogle Scholar
Kajihara, M. 1971 Settling velocity and porosity of suspended particle. J. Oceanogr. Soc. Japan 27, 158162.CrossRefGoogle Scholar
Lai, A., Zhao, B., Law, A. -K. & Adams, E. 2013 Two-phase modeling of sediment clouds. Environ. Fluid Mech. 129.Google Scholar
Lauga, E., Brenner, M. P. & Stone, H. A. 2005 Microfluidics: the no-slip boundary condition. Handbook of Experimental Fluid Dynamics. Springer.Google Scholar
Lee, W. Y., Li, A. C. Y., Lee, J. H. W. & Asce, F. 2013 Structure of a horizontal sediment-laden momentum jet. J. Hydraul. Engng 139, 124140.CrossRefGoogle Scholar
Loudon, R. & Roberts, M. 1967 Relation between the airborne diameters of respiratory droplets and the diameter of the stains left after recovery. Nature 213, 9596.CrossRefGoogle Scholar
Martin, D. & Nokes, R. 1988 Crystal settling in a vigorously convecting magma chamber. Nature 332, 534536.Google Scholar
McCool, F. D. 2006 Global physiology and pathophysiology of cough. Chest 129 (1 Suppl), 48S53S.CrossRefGoogle ScholarPubMed
McCutchan, J. W. & Taylor, C. L. 1981 Respiratory heat exchange with varying temperature and humidity of inspired air. J. Appl. Physiol. 4, 121135.CrossRefGoogle Scholar
Melikov, A. K. & Kaczmarczyk, J. 2012 Air movement and perceived air quality. Build. Environ. 47, 400409.CrossRefGoogle Scholar
Morawska, L. 2006 Droplet fate in indoor environments, or can we prevent the spread of infection?. Indoor Air 16, 335347.CrossRefGoogle ScholarPubMed
Morawska, L., Johnson, G., Ristovski, Z., Hargreaves, M., Mengersen, K., Corbett, S., Chao, C., Li, Y. & Katoshevski, D. 2009a Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. Aerosol Sci. 40, 256259.Google Scholar
Morawska, L., Johnson, G., Ristovski, Z., Hargreaves, M., Mengersen, K., Corbett, S., Chao, C., Li, Y. & Katoshevski, D. 2009b Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. J. Aerosol Sci. 40, 256269.Google Scholar
Morton, B. R., Taylor, G. I. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. 234, 123.Google Scholar
Nicas, M., Nazaroff, W. W. & Hubbard, A. 2005 Toward understanding the risk of secondary airborne infection: emission of respirable pathogens. J. Occup. Environ. Hyg. 2, 143154.Google Scholar
Papineni, R. S. & Rosenthal, F. S. 1997 The size distribution of droplets in the exhaled breath of healthy human subjects. J. Aerosol Med. 10, 105116.CrossRefGoogle ScholarPubMed
Park, J., Kang, S., Lee, S. & Kim, W. C. D. 2010 How respiratory muscle strength correlates with cough capacity in patients with respiratory muscle weakness. Yonsei Med. J. 51, 392397.Google Scholar
Picard, A., Davis, R. S., Gläser, M. & Fujii, K. 2008 Revised formula for the density of moist air (CIPM-2007). Metrologia 45, 149155.Google Scholar
Richards, J. M. 1961 Experiments on the penetration of an interface by buoyant thermals. J. Fluid Mech. 11, 369384.CrossRefGoogle Scholar
Richards, J. M. 1965 Puff motions in unstratified surroundings. J. Fluid Mech. 21, 97106.Google Scholar
Scorer, R. S. 1957 Experiments on convection of isolated masses of buoyant fluid. J. Fluid Mech. 2, 583594.CrossRefGoogle Scholar
Scorer, R. S. 1978 Environmental Aerodynamics. Ellis Horwood.Google Scholar
Settles, G. S. 2006 Fluid mechanics and homeland security. Annu. Rev. Fluid Mech. 38, 87110.Google Scholar
Socolofsky, S. A., Crounse, B. C. & Adams, E. E.Environmental fluid mechanics: theories and applications. In Multi-Phase Plumes in Uniform, Stratified, and Flowing Environments American Society of Civil Engineers.Google Scholar
Sonkin, L. S. 1951 The role of particle size in experimental airborne infection. Am. J. Hyg. 53, 337354.Google Scholar
Tang, J. W., Li, Y., Eames, I., Chan, P. & Ridgway, G. 2006 Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises. J. Hosp. Infect. 64, 100114.CrossRefGoogle ScholarPubMed
Tang, J. W., Liebner, T. J., Craven, B. A. & Settles, G. S. 2009 A schlieren optical study of the human cough with and without wearing masks for aerosol infection control. J. R. Soc. Interface 6, S727S736.Google Scholar
Tang, J. W., Path, F. R. C. & Settles, G. S. 2008 Coughing and aerosols. New Engl. J. Med. 359, e19.Google Scholar
Tellier, R. 2006 Review of aerosol transmission of influenza A virus. Emerg. Infect. Dis. 12, 16571662.Google Scholar
Tellier, R. 2009 Aerosol transmission of influenza A virus: a review of new studies. J. R. Soc. Interface 6, S783S790.Google Scholar
Turner, J. S. 1979 Buoyancy Effects in Fluids. Cambridge University Press.Google Scholar
Weber, T. P. & Stilianakis, N. I. 2008 Inactivation of influenza A virus in the environment and modes of transmission: a critical review. J. Infect. 57, 361373.Google Scholar
Wells, W. F. 1934 On air-born infection. Study II. Droplet and droplet nuclei. Am. J. Hyg. 20, 611618.Google Scholar
Wells, W. F. 1955 Airborne Contagion and Air Hygiene: An Ecological Study of Droplet Infection. Harvard University Press.Google Scholar
Wong, T. W., Lee, C. K., Tam, W., Lau, J. T., Yu, T. S., Lui, S. F., Chan, P. K., Li, Y., Bresee, J. S., Sung, J. J. & Parashar, U. D. 2004 Cluster of SARS among medical students exposed to single patient—Hong Kong. Emerg. Infect. Dis. 10, 269276.CrossRefGoogle ScholarPubMed
Woods, A. W. 2010 Turbulent plumes in nature. Annu. Rev. Fluid Mech. 42, 391412.CrossRefGoogle Scholar
Yang, S., Lee, G. W. M., Chen, C. -M., Wu, C. -C. & Yu, K. -P. 2007 The size and concentration of droplets generated by coughing in human subjects. J. Aerosol Med. 20, 484494.CrossRefGoogle ScholarPubMed
Yu, I. T., Li, Y., Wong, T. W., Tam, W., Chan, A. T., Lee, J. H., Leung, D. Y. & Ho, T. 2004 Evidence of airborne transmission of the severe acute respiratory syndrome virus. New Engl. J. Med. 350, 17311739.Google Scholar
Zayas, G., Chiang, M., Wong, E., MacDonald, F., Lange, C., Senthilselvan, A. & King, M. 2012 Cough aerosol in healthy participants: fundamental knowledge to optimize droplet-spread infectious respiratory disease management. BMC Pulmonary Med. 12 (1), 11 doi:10.1186/1471-2466-12-11.Google Scholar