Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T17:04:01.976Z Has data issue: false hasContentIssue false

Velocity fluctuations in a low-Reynolds-number fluidized bed

Published online by Cambridge University Press:  17 January 2008

SHANG-YOU TEE
Affiliation:
Department of Physics, Harvard University, Cambridge, MA 02138, USA School of Engineering and Applied Science, Harvard University, Cambridge, MA 02138, USA
P. J. MUCHA
Affiliation:
Department of Mathematics & Institute for Advanced Materials, University of North Carolina, Chapel Hill, NC 27599, USA
M. P. BRENNER
Affiliation:
School of Engineering and Applied Science, Harvard University, Cambridge, MA 02138, USA
D. A. WEITZ
Affiliation:
Department of Physics, Harvard University, Cambridge, MA 02138, USA School of Engineering and Applied Science, Harvard University, Cambridge, MA 02138, USA

Abstract

The velocity fluctuations of particles in a low-Reynolds-number fluidized bed have important similarities and differences with the velocity fluctuations in a low-Reynolds-number sedimenting suspension. We show that, like sedimentation, the velocity fluctuations in a fluidized bed are described well by the balance between density fluctuations due to Poisson statistics and Stokes drag. However, unlike sedimentation, the correlation length of the fluctuations in a fluidized bed increases with volume fraction. We argue that this difference arises because the relaxation time of density fluctuations is completely different in the two systems.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R. J. 1991 Particle-imaging techniques for experimental fluid-mechanics. Annu. Rev. Fluid Mech. 23, 261304.CrossRefGoogle Scholar
Al-Naafa, M. A. & Selim, M. S. 1992 Sedimentation of monodisperse and bidisperse hard-sphere colloidal suspensions. AIChE J. 38, 16181630.Google Scholar
Asmolov, E. S. 2004 Evolution of fluctuations in a suspension sedimenting in a container bounded by horizontal walls. Phys. Fluids 16, 30863093.CrossRefGoogle Scholar
Bargiel, M., Ford, R. A. & Tory, E. M. 2005 Simulation of sedimentation of polydisperse suspensions: A particle-based approach. AIChE J. 51, 24572468.CrossRefGoogle Scholar
Batchelor, G. K. 1982 Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General theory. J. Fluid Mech. 119, 379408.Google Scholar
Batchelor, G. K. & Wen, C.-S. 1982 Sedimentation in a polydisperse system. Part 2. J. Fluid Mech. 124, 495528.CrossRefGoogle Scholar
Bergougnoux, L., Ghicini, S., Guazzelli, E. & Hinch, J. 2003 Spreading fronts and fluctuations in sedimentation. Phys. Fluids 15, 18751887.Google Scholar
Brenner, M. P. 1999 Screening mechanisms in sedimentation. Phys. Fluids 11, 754.Google Scholar
Bruneau, D., Anthore, R., Feuillebois, F., Auvray, X. & Petipas, C. 1990 Measurement of the average velocity of sedimentation in a dilute polydisperse suspension of spheres. J. Fluid Mech. 221, 577596.CrossRefGoogle Scholar
Caflisch, R. E. & Luke, J. H. C. 1985 Variance in the sedimentation speed of a suspension. Phys. Fluids 28, 759.CrossRefGoogle Scholar
Couderc, J. P., Davidson, J. F., Clift, R. & Harrison, D. 1985 Fluidization. Academic.Google Scholar
Cowan, M. L., Page, J. H. & Weitz, D. A. 2000 Velocity fluctuations in fluidized suspensions probed by ultrasonic correlation spectroscopy. Phys. Rev. Lett. 85, 453.Google Scholar
Cunha, F. R., Abade, G. C., Sousa, A. J. & Hinch, E. J. 2002 a Modeling and direct simulation of velocity fluctuations and particle-velocity correlations in sedimentation. Trans. ASME J. Fluids Engng 124, 957968.Google Scholar
Cunha, F. R., Sousa, A. J. & Hinch, E. J. 2002 b Numerical simulation of velocity fluctuations and dispersion of sedimentating particles. Chem. Engng Commun. 189, 11051129.CrossRefGoogle Scholar
Davies, R. 1968 The experimental study of the differential settling of particles in suspension at high concentration. Powder Tech. 2, 43.CrossRefGoogle Scholar
Guazzelli, E. 2001 Evolution of particle-velocity correlations in sedimentation. Phys. Fluids 13, 1537.CrossRefGoogle Scholar
Ham, J. M. & Homsy, G. M. 1988 Hindered settling and hydrodynamic dispersion in quiescent sedimenting suspensions. Intl J. Multiphase Flow 14, 533.Google Scholar
Hinch, E. J. 1988 Sedimentation of small particles. In Disorder and Mixing (ed. Guyon, E., Nadal, J.-P. & Pomeau, Y.), p. 153161. Kluwer.Google Scholar
Hoyos, M., Bacri, J. C., Martin, J. & Salin, D. 1994 A study of the sedimentation of noncolloidal bidisperse, concentrated suspensions by an acoustic technique. Phys. Fluids 6, 38093817.CrossRefGoogle Scholar
Kuusela, E., Lahtinen, J. M. & Ala-Nissila, T. 2003 Collective effects in settling of spheroids under steady-state sedimentation. Phys. Rev. Lett. 90, 094502.CrossRefGoogle ScholarPubMed
Kuusela, E., Lahtinen, J. M. & Ala-Nissila, T. 2004 Sedimentation dynamics of spherical particles in confined geometries. Phys. Rev. E 69, 066310.Google Scholar
Lockett, M. J. & Alhabboo, H. M. 1973 Differential settling by size of 2 particle species in a liquid. Trans. Inst. Chem. Engrs 51, 281292.Google Scholar
Martin, J., Rakotomalala, N. & Salin, D. 1995 Hydrodynamic dispersion of noncolloidal suspensions - measurement from Einsteins argument. Phys. Rev. Lett. 74, 13471350.CrossRefGoogle ScholarPubMed
Mirza, S. & Richardson, J. F. 1979 Sedimentation of Suspensions of Particles of 2 or more Sizes. chem. Engng Sci. 34, 447454.CrossRefGoogle Scholar
Mucha, P. J. & Brenner, M. P. 2003 Diffusivities and front propagation in sedimentation. Phys. Fluids 15, 13051313.Google Scholar
Mucha, P. J., Tee, S. Y., Weitz, D. A., Shraiman, B. I. & Brenner, M. P. 2004 A model for velocity fluctuations in sedimentation. J. Fluid Mech. 501, 71104.Google Scholar
Nguyen, N. Q. & Ladd, A. J. C. 2005 Sedimentation of hard-sphere suspensions at low Reynolds number. J. Fluid Mech. 525, 73104.CrossRefGoogle Scholar
Nicolai, H. & Guazzelli, E. 1995 Effect of the vessel size on the hydrodynamic diffusion of sedimenting spheres. Phys. Fluids 7, 3.CrossRefGoogle Scholar
Page, J. H., Cowan, M. L. & Weitz, D. A. 2000 Diffusing acoustic wave spectroscopy of fluidized suspensions. Physica B 279, 130.CrossRefGoogle Scholar
Raffel, M. 1998 Particle Image Velocimetry. Springer.Google Scholar
Rouyer, F., Lhuillier, D., Martin, J. & Salin, D. 2000 Structure, density, and velocity fluctuations in quasi-two-dimensional non-Brownian suspensions of spheres. Phys. Fluids 12, 958963.CrossRefGoogle Scholar
Segrè, P. N. 2002 Origin of stability in sedimentation. Phys. Rev. Lett. 89.Google Scholar
Segrè, P. N., Herbolzheimer, E. & Chaikin, P. M. 1997 Long-range correlations in sedimentation. Phys. Rev. Lett. 79, 2574.CrossRefGoogle Scholar
Segrè, P. N., Liu, F., Umbanhowar, P. & Weitz, D. A. 2001 An effective gravitational temperature for sedimentation. Nature 409, 594.CrossRefGoogle ScholarPubMed
Segrè, P. N. & McClymer, J. P. 2004 Fluctuations, stratification and stability in a liquid fluidized bed at low Reynolds number. J. Phys. Condensed Matter 16, S4219S4230.CrossRefGoogle Scholar
Selim, M. S., Kothari, A. C. & Turian, R. M. 1983 Sedimentation of multisized particles in concentrated suspensions. AIChE J. 29, 10291038.CrossRefGoogle Scholar
Smith, T. N. 1965 Differential sedimentation of particles of 2 different species. Trans. Inst. Chem. Engrs and The Chem. Enger 43, T69.Google Scholar
Smith, T. N. 1966 Sedimentation of particles having a dispersion of sizes. Trans. Inst. Chem. Engrs and The Chem. Engr 44, T153.Google Scholar
Smith, T. N. 1967 Differential sedimentation of particles of various species. Trans. Inst. Chem. Engrs and The Chem. Engr 45, T311.Google Scholar
Tee, S. Y., Mucha, P. J., Cipelletti, L., Manley, S., Brenner, M. P., Segre, P. N. & Weitz, D. A. 2002 Nonuniversal velocity fluctuations of sedimenting particles. Phys. Rev. Lett. 89, 054501.Google Scholar
Xue, J.-Z., Heborlzheimer, E., Rutgers, M. A., Russel, W. B. & Chaikin, P. M. 1992 Diffusion, dispersion, and settling of hard spheres. Phys. Rev. Lett. 69, 1715.CrossRefGoogle ScholarPubMed