Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T23:41:16.821Z Has data issue: false hasContentIssue false

A variational framework for computing nonlinear optimal disturbances in compressible flows

Published online by Cambridge University Press:  28 April 2020

Zhu Huang*
Affiliation:
Center for Turbulence Research, Stanford University, Stanford, CA94305, USA
M. J. Philipp Hack*
Affiliation:
Center for Turbulence Research, Stanford University, Stanford, CA94305, USA
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

A variational framework for the identification and analysis of general nonlinear optimal disturbances in compressible flows is derived. The formulation is based on the compressible Navier–Stokes equations in conserved variables for an ideal gas with temperature-dependent viscosity. A discretely consistent implementation based on generalized coordinates allows the accurate analysis of a wide range of settings. An application in the identification of the optimal disturbances which experience the highest amplification in kinetic energy in pipe flow is presented. At low Mach numbers and moderate initial amplitude, the disturbances undergo a sequence of Orr mechanism, oblique nonlinear interaction and lift-up mechanism, and the energy amplification is consistent with results reported for incompressible flow (Pringle & Kerswell, Phys. Rev. Lett., vol. 105, 2010, 154502). When the Mach number is increased, the gain in perturbation kinetic energy grows appreciably, and the initial disturbance field becomes increasingly localized. Nonlinear optimal disturbances which are rescaled to higher initial kinetic energy than prescribed in the optimization procedure are demonstrated to evolve into a chaotic state. For a constant time horizon, the initial perturbation energy to reach a high-energy state decreases monotonically with Mach number.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S. 2001 On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 2960.CrossRefGoogle Scholar
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbation in viscous shear flow. Phys. Fluids A 4, 16371650.CrossRefGoogle Scholar
Cherubini, S., Palma, P. D., Robinet, J. C. & Bottaro, A. 2011 The minimal seed of turbulent transition in the boundary layer. J. Fluid Mech. 689, 221253.CrossRefGoogle Scholar
Cherubini, S., Robinet, J.-C., Bottaro, A. & De Palma, P. 2010 Optimal wave packets in a boundary layer and initial phases of a turbulent spot. J. Fluid Mech. 656, 231259.Google Scholar
Eaves, T. S. & Caulfield, C. P. 2015 Disruption of SSP/VVI states by a stable stratification. J. Fluid Mech. 784, 548564.CrossRefGoogle Scholar
Farano, M., Cherubini, S., Robinet, J.-C., De Palma, P. & Schneider, T. M. 2019 Computing heteroclinic orbits using adjoint-based methods. J. Fluid Mech. 858, R3.CrossRefGoogle Scholar
Farano, M., Cherubini, S., Robinet, J.-C. & Palma, P. D. 2015 Hairpin-like optimal perturbations in plane Poiseuille flow. J. Fluid Mech. 775, R2.CrossRefGoogle Scholar
Flint, T. & Hack, M. J. P. 2018 A computational framework for stability analysis of high-speed flows in complex geometries. In Annual Research Briefs, pp. 221235. Center for Turbulence Research, Stanford University.Google Scholar
Gustavsson, L. H. 1991 Energy growth of three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech. 224, 241260.CrossRefGoogle Scholar
Hack, M. J. P. & Moin, P. 2017 Algebraic disturbance growth by interaction of Orr and lift-up mechanisms. J. Fluid Mech. 829, 112126.CrossRefGoogle Scholar
Hack, M. J. P. & Moin, P. 2018 Coherent instability in wall-bounded shear. J. Fluid Mech. 844, 917955.CrossRefGoogle Scholar
Hack, M. J. P. & Zaki, T. A. 2014 Streak instabilities in boundary layers beneath free-stream turbulence. J. Fluid Mech. 741, 280315.CrossRefGoogle Scholar
Jovanovic, M. R. & Bamieh, B. 2005 Componentwise energy amplification in channel flows. J. Fluid Mech. 534, 145183.CrossRefGoogle Scholar
Kerswell, R. R. 2018 Nonlinear nonmodal stability theory. Annu. Rev. Fluid Mech. 50, 319345.CrossRefGoogle Scholar
Luchini, P. & Bottaro, A. 2014 Adjoint equations in stability analysis. Annu. Rev. Fluid Mech. 46, 493517.CrossRefGoogle Scholar
McKeon, B. J. & Sharma, A. S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.CrossRefGoogle Scholar
Monokrousos, A., Åkervik, E., Brandt, L. & Henningson, D. S. 2010 Global three-dimensional optimal disturbances in the Blasius boundary-layer flow using time-steppers. J. Fluid Mech. 650, 181214.CrossRefGoogle Scholar
Monokrousos, S., Bottaro, A., Brandt, L., Vita, A. D. & Henningson, D. S. 2011 Nonequilibrium thermodynamics and the optimal path to turbulence in shear flows. Phys. Rev. Lett. 106, 134502.CrossRefGoogle ScholarPubMed
Olvera, D. & Kerswell, R. R. 2017 Optimizing energy growth as a tool for finding exact coherent structures. Phys. Rev. Fluids 2, 083902.CrossRefGoogle Scholar
Pringle, C. C. T. & Kerswell, R. R. 2010 Using nonlinear transient growth to construct the minimal seed for shear flow turbulence. Phys. Rev. Lett. 105, 154502.CrossRefGoogle ScholarPubMed
Pringle, C. C. T., Willis, A. P. & Kerswell, R. R. 2012 Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of chaos. J. Fluid Mech. 702, 415443.CrossRefGoogle Scholar
Pringle, C. C. T., Willis, A. P. & Kerswell, R. R. 2015 Fully localised nonlinear energy growth optimals in pipe flow. Phys. Fluids 27, 064102.Google Scholar
Rabin, S. M. E., Caulfield, C. P. & Kerswell, R. R. 2012 Triggering turbulence efficiently in plane Couette flow. J. Fluid Mech. 712, 244272.CrossRefGoogle Scholar
Reddy, S. C., Schmid, P. J., Baggett, J. S. & Henningson, D. S. 1993 Pseudospectra of the Orr–Sommerfeld operator. SIAM J. Appl. Maths 53, 1547.CrossRefGoogle Scholar
Reddy, S. C., Schmid, P. J., Baggett, J. S. & Henningson, D. S. 1998 On stability of streamwise streaks and transition thresholds in plane channel flows. J. Fluid Mech. 365, 269303.CrossRefGoogle Scholar
Rigas, G., Sipp, D. & Colonius, T. 2020 Non-linear input/output analysis: application to boundary layer transition. J. Fluid Mech. (submitted).Google Scholar
Roizner, F., Karp, M. & Cohen, J. 2016 Subcritical transition in plane Poiseuille flow as a linear instability process. Phys. Fluids 28 (5), 054104.CrossRefGoogle Scholar
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.CrossRefGoogle Scholar
Schmid, P. J. & Henningson, D. S. 1994 Optimal energy density growth in Hagen-Poiseuille flow. J. Fluid Mech. 277, 197225.CrossRefGoogle Scholar
Strand, B. 1994 Summation by parts for finite-difference approximations of d/dx. J. Comput. Phys. 110, 4767.CrossRefGoogle Scholar
Svärd, M. & Nordström, J. 2008 A stable high-order finite difference scheme for the compressible Navier–Stokes equations no-slip wall boundary conditions. J. Comput. Phys. 227, 48054824.CrossRefGoogle Scholar
Tempelmann, D., Hanifi, A. & Henningson, D. S. 2012 Spatial optimal growth in three-dimensional compressible boundary layers. J. Fluid Mech. 704, 251279.CrossRefGoogle Scholar
Thomas, P. D. & Lombard, C. K. 1979 Geometric conservation law and its application to flow computations on moving grids. AIAA J. 17, 10301037.CrossRefGoogle Scholar
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261, 578584.CrossRefGoogle ScholarPubMed