Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-20T18:32:58.088Z Has data issue: false hasContentIssue false

Unsteady wave pattern generation by water striders

Published online by Cambridge University Press:  05 June 2018

Thomas Steinmann
Affiliation:
Institut de Recherche sur la Biologie de l’Insecte, UMR CNRS 7261, Université de Tours, France
Maxence Arutkin
Affiliation:
UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
Précillia Cochard
Affiliation:
Institut de Recherche sur la Biologie de l’Insecte, UMR CNRS 7261, Université de Tours, France
Elie Raphaël
Affiliation:
UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
Jérôme Casas
Affiliation:
Institut de Recherche sur la Biologie de l’Insecte, UMR CNRS 7261, Université de Tours, France
Michael Benzaquen*
Affiliation:
LadHyX, UMR CNRS 7646, Ecole Polytechnique, 91128 Palaiseau CEDEX, France
*
Email address for correspondence: [email protected]

Abstract

We perform an experimental and theoretical study of the wave pattern generated by the leg strokes of water striders during a propulsion cycle. Using the synthetic schlieren method, we are able to measure the dynamic response of the free surface accurately. In order to match experimental conditions, we extend Bühler’s theory of impulsive forcing (J. Fluid Mech., vol. 573, 2007, pp. 211–236) to finite depth. We demonstrate the improved ability of this approach to reproduce the experimental findings, once the observed continuous forcing and hence non-zero temporal and spatial extent of the leg strokes is also taken into account.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Département de biologie, Université Laval, Québec, QC G1V 0A6, Canada.

References

Basu, S., Yawar, A., Concha, A. & Bandi, M. M.2017 On angled bounce-off impact of a drop impinging on a flowing soap film arXiv:1705.05948.CrossRefGoogle Scholar
Bleckmann, H., Borchardt, M., Horn, P. & Görner, P. 1994 Stimulus discrimination and wave source localization in fishing spiders (dolomedes triton and d.okefinokensis). J. Compar. Physiol. A 174 (3), 305316.Google Scholar
Bühler, O. 2007 Impulsive fluid forcing and water strider locomotion. J. Fluid Mech. 573, 211236.CrossRefGoogle Scholar
Bush, J. W. M. & Hu, D. L. 2006 Walking on water: biolocomotion at the interface. Annu. Rev. Fluid Mech. 38, 339369.CrossRefGoogle Scholar
Denny, M. W. 2004 Paradox lost: answers and questions about walking on water. J. Expl Biol. 207 (10), 16011606.CrossRefGoogle ScholarPubMed
Feldmann, O. & Mayinger, F. 2001 Optical measurements. Heat and Mass Transfer, 2nd edn. Springer.Google Scholar
Gao, P. & Feng, J. J. 2011 A numerical investigation of the propulsion of water walkers. J. Fluid Mech. 668, 363383.CrossRefGoogle Scholar
Gierczak, L., Arutkin, M., Fadle, A., Benzaquen, M. & Raphael, E.2018 (in preparation).Google Scholar
Glasheen, J. W. & McMahon, T. A. 1996 A hydrodynamic model of locomotion in the basilisk lizard. Nature 380 (6572), 340.CrossRefGoogle Scholar
Hu, D. L. & Bush, J. W. M. 2010 The hydrodynamics of water-walking arthropods. J. Fluid Mech. 644, 533.CrossRefGoogle Scholar
Hu, D. L., Chan, B. & Bush, J. W. M. 2003 The hydrodynamics of water strider locomotion. Nature 424 (6949), 663.CrossRefGoogle ScholarPubMed
Hu, D. L., Prakash, M., Chan, B. & Bush, J. W. M. 2007 Water-walking devices. Exp. Fluids 43, 769778.CrossRefGoogle Scholar
Jia, X., Chen, Z., Riedel, A., Si, T., Hamel, W. R. & Zhang, M. 2015 Energy-efficient surface propulsion inspired by whirligig beetles. IEEE Trans. Robot. 31 (6), 14321443.CrossRefGoogle Scholar
Keller, J. B. 1998 Surface tension force on a partly submerged body. Phys. Fluids 10 (11), 30093010.CrossRefGoogle Scholar
Koh, J. S., Yang, E., Jung, G. P., Jung, S. P., Son, J. H., Lee, S. I. & Cho, K. J. 2015 Jumping on water: surface tension-dominated jumping of water striders and robotic insects. Science 349 (6247), 517521.CrossRefGoogle ScholarPubMed
Lamb, H. 1993 Hydrodynamics. Cambridge Mathematical Library.Google Scholar
Moisy, F., Rabaud, M. & Salsac, K. 2009 A synthetic schlieren method for the measurement of the topography of a liquid interface. Exp. Fluids 46 (6), 1021.CrossRefGoogle Scholar
Mukundarajan, H., Bardon, T. C., Kim, D. H. & Prakash, M. 2016 Surface tension dominates insect flight on fluid interfaces. J. Expl Biol. 219 (5), 752766.CrossRefGoogle ScholarPubMed
Ortega-Jimenez, V. M., von Rabenau, L. & Dudley, R. 2017 Escape jumping by three age-classes of water striders from smooth, wavy and bubbling water surfaces. J. Expl Biol. 220 (15), 28092815.Google ScholarPubMed
Pizzo, N. E., Deike, L. & Melville, W. K. 2016 Current generation by deep-water breaking waves. J. Fluid Mech. 803, 275291.CrossRefGoogle Scholar
Raphaël, E. & de Gennes, P.-G. 1996 Capillary gravity waves caused by a moving disturbance: wave resistance. Phys. Rev. E 53 (4), 3448.CrossRefGoogle ScholarPubMed
Rinoshika, A. 2011 Vortical dynamics in the wake of water strider locomotion. J. Vis. 15, 145153.CrossRefGoogle Scholar
Song, Y. S. & Sitti, M. 2007 Surface-tension-driven biologically inspired water strider robots: theory and experiments. IEEE Trans. Robot. 23 (3), 578589.CrossRefGoogle Scholar
Sun, P., Zhao, M., Jiang, J. & Zheng, Y. 2018 The study of dynamic force acted on water strider leg departing from water surface. AIP Adv. 8 (1), 015228.CrossRefGoogle Scholar
Suter, R. B. 2013 Spider locomotion on the water surface: biomechanics and diversity. J. Arachnol. 41 (2), 93101.CrossRefGoogle Scholar
Sveen, J. K. & Cowen, E. A. 2004 Quantitative imaging techniques and their application to wavy flows. Adv. Coastal Ocean Engng 9, 1.CrossRefGoogle Scholar
Tucker, V. A. 1969 Wave-making by whirligig beetles (gyrinidae). Science 166 (3907), 897899.CrossRefGoogle ScholarPubMed
Vogel, S. 2013 Comparative Biomechanics: Life’s Physical World. Princeton University Press.Google Scholar
Voise, J. & Casas, J. 2010 The management of fluid and wave resistances by whirligig beetles. J. R. Soc. Interface 7, 343.CrossRefGoogle ScholarPubMed
Voise, J. & Casas, J. 2014 Echolocation in whirligig beetles using surface waves: an unsubstantiated conjecture. In Studying Vibrational Communication, pp. 303317. Springer.CrossRefGoogle Scholar
Wiese, K. 1974 The mechanoreceptive system of prey localization innotonecta. J. Compar. Physiol. A 92 (3), 317325.CrossRefGoogle Scholar
Wilcox, R. S. 1972 Communication by surface waves. J. Compar. Physiol. A 80 (3), 255266.CrossRefGoogle Scholar
Xu, Z., Lenaghan, S. C., Reese, B. E., Jia, X. & Zhang, M. 2012 Experimental studies and dynamics modeling analysis of the swimming and diving of whirligig beetles (coleoptera: Gyrinidae). PLoS Comput. Biol. 8 (11), e1002792.CrossRefGoogle ScholarPubMed
Yang, K., Liu, G., Yan, J., Wang, T., Zhang, X. & Zhao, J. 2016a A water-walking robot mimicking the jumping abilities of water striders. Bioinspir. Biomim. 11 (6), 066002.CrossRefGoogle ScholarPubMed
Yang, E., Son, J. H., Jablonski, P. G. & Kim, H. Y. 2016b Water striders adjust leg movement speed to optimize takeoff velocity for their morphology. Nat. Commun. 7 (13698).CrossRefGoogle ScholarPubMed
Yuan, J. & Cho, S. K. 2012 Bio-inspired micro/mini propulsion at air–water interface: a review. J. Mech. Sci. Technol. 26 (12), 37613768.CrossRefGoogle Scholar
Zheng, Y., Lu, H., Yin, W., Tao, D., Shi, L. & Tian, Y. 2016 Elegant shadow making tiny force visible for water-walking arthropods and updated archimedes principle. Langmuir 32 (41), 1052210528.CrossRefGoogle ScholarPubMed
Zheng, J., Yu, K., Zhang, J., Wang, J. & Li, C. 2015 Modeling of the propulsion hydrodynamics for the water strider locomotion on water surface. Proc. Engng 126, 280284.CrossRefGoogle Scholar
Supplementary material: File

Steinmann et al. supplementary material 1

Steinmann et al. supplementary material

Download Steinmann et al. supplementary material 1(File)
File 342.8 KB