Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-19T12:47:16.208Z Has data issue: false hasContentIssue false

Unsteady flow past a rotating circular cylinder at Reynolds numbers 103 and 104

Published online by Cambridge University Press:  26 April 2006

H. M. Badr
Affiliation:
Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudia Arabia
M. Coutanceau
Affiliation:
Laboratoire de Mécanique des Fluides, 40 Avenue du Recteur Pineau, Poitiers 86022, France
S. C. R. Dennis
Affiliation:
Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B9
C. Ménard
Affiliation:
Laboratoire de Mécanique des Fluides, 40 Avenue du Recteur Pineau, Poitiers 86022, France

Abstract

The unsteady flow past a circular cylinder which starts translating and rotating impulsively from rest in a viscous fluid is investigated both theoretically and experimentally in the Reynolds number range 103 [les ] R [les ] 104 and for rotational to translational surface speed ratios between 0.5 and 3. The theoretical study is based on numerical solutions of the two-dimensional unsteady Navier–Stokes equations while the experimental investigation is based on visualization of the flow using very fine suspended particles. The object of the study is to examine the effect of increase of rotation on the flow structure. There is excellent agreement between the numerical and experimental results for all speed ratios considered, except in the case of the highest rotation rate. Here three-dimensional effects become more pronounced in the experiments and the laminar flow breaks down, while the calculated flow starts to approach a steady state. For lower rotation rates a periodic structure of vortex evolution and shedding develops in the calculations which is repeated exactly as time advances. Another feature of the calculations is the discrepancy in the lift and drag forces at high Reynolds numbers resulting from solving the boundary-layer limit of the equations of motion rather than the full Navier–Stokes equations. Typical results are given for selected values of the Reynolds number and rotation rate.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badr, H. M., Coutanceau, M., Dennis, S. & Ménard, C. 1985 C. R. Acad. Sci. Paris 300, II, 529.
Badr, H. M., Coutanceau, M., Dennis, S. & Ménard, C. 1986 C. R. Acad. Sci. Paris 302, II, 1127.
Badr, H. M. & Dennis, S. C. R. 1985 J. Fluid Mech. 158, 447.
Badr, H. M. & Dennis, S. C. R. 1987 In Boundary-Layer Separation (ed. F. T. Smith & S. Brown), pp. 235249. Springer.
Badr, H. M., Dennis, S. C. R. & Young, P. J. S. 1989 Computers & Fluids 17, 579.
Bouard, R. & Coutanceau, M., 1980 J. Fluid Mech. 101, 583.
Collins, W. M. & Dennis, S. C. R. 1973 J. Fluid Mech. 60, 105.
Coutanceau, M. & Bouard, R., 1977 J. Fluid Mech. 79, 231.
Coutanceau, M. & Ménard, C. 1985 J. Fluid Mech. 158, 399.
Dennis, S. C. R. & Quartapelle, L. 1989 Intl J. Numer. Meth. Fluids 9, 871.
Ece, M. C., Walker, J. D. A. & Doligalski, T. L. 1984 Phys. Fluids 27, 1077.
Glauert, M. B.: 1957a J. Fluid Mech. 2, 89.
Glauert, M. B.: 1957b Proc. R. Soc. Lond. A 230, 108.
Goldstein, S.: 1938 Modern Developments in Fluid Dynamics, vol. 1. Oxford University Press.
Ingham, D. B.: 1983 Computers & Fluids 11, 351.
Ménard, C.: 1984 Étude de la formation du sillage engendré par le démarrage impulsif d'un cylindre soumis à des mouvements combinés de translation et de rotation. Thése de 3me. cycle, Université de Poitiers.
Moore, D. W.: 1957 J. Fluid Mech. 2, 541.
Prandtl, L.: 1927 J. R. Aero. Soc. 31, 736737.
Prandtl, L. & Tietjens, O., 1931 Hydro-und-Aeromechanik, vol. 2. Springer.
Ta Phuoc, Loc 1975 J. Méc. 14, 109.
Wood, W. W.: 1957 J. Fluid Mech. 2, 77.