Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-19T14:10:48.341Z Has data issue: false hasContentIssue false

Unsteady aerodynamic theory for membrane wings

Published online by Cambridge University Press:  12 September 2022

Sonya Tiomkin*
Affiliation:
Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA
Justin W. Jaworski
Affiliation:
Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA
*
Email address for correspondence: [email protected]

Abstract

We study analytically the dynamic response of membrane aerofoils subject to arbitrary, small-amplitude chord motions and transverse gusts in a two-dimensional inviscid incompressible flow. The theoretical model assumes linear deformations of an extensible membrane under constant tension, which are coupled aeroelastically to external aerodynamic loads using unsteady thin aerofoil theory. The structural and aerodynamic membrane responses are investigated for harmonic heave oscillations, an instantaneous change in angle of attack, sinusoidal transverse gusts and a sharp-edged gust. The unsteady lift responses for these scenarios produce aeroelastic extensions to the Theodorsen, Wagner, Sears and Küssner functions, respectively, for a membrane aerofoil. These extensions incorporate for the first time membrane fluid–structure interaction into the expressions for the unsteady lift response of a flexible aerofoil. The indicial responses to step changes in the angle of attack or gust profile are characterised by a slower lift response in short times relative to the classical rigid-plate response, while achieving a significantly higher asymptotic lift at long times due to aeroelastic camber. The unsteady lift for harmonic gusts or heaving motions follows closely the rigid plate lift responses at low reduced frequencies but with a reduced lift amplitude and greater phase lag. However, as the reduced frequency approaches the resonance of the fluid-loaded membrane, the lift response amplitude increases abruptly and is followed by a sharp decrease. This behaviour reveals a frequency region, controlled by the membrane tension coefficient, for which membrane aerofoils could possess substantial aerodynamic benefits over rigid aerofoils in unsteady flow conditions.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alben, S. 2008 Optimal flexibility of a flapping appendage in an inviscid fluid. J. Fluid Mech. 614, 355380.CrossRefGoogle Scholar
Alon Tzezana, G. & Breuer, K.S. 2019 Thrust, drag and wake structure in flapping compliant membrane wings. J. Fluid Mech. 862, 871888.CrossRefGoogle Scholar
Andreu-Angulo, I., Babinsky, H., Biler, H., Sedky, G. & Jones, A.R. 2020 Effect of transverse gust velocity profiles. AIAA J. 58 (12), 51235133.CrossRefGoogle Scholar
Arbos-Torrent, S., Ganapathisubramani, B. & Palacios, R. 2013 Leading-and trailing-edge effects on the aeromechanics of membrane aerofoils. J. Fluids Struct. 38, 107126.CrossRefGoogle Scholar
Baddoo, P.J., Hajian, R. & Jaworski, J.W. 2021 Unsteady aerodynamics of porous aerofoils. J. Fluid Mech. 913, A16.CrossRefGoogle Scholar
Berci, M., Gaskell, P.H., Hewson, R.W. & Toropov, V.V. 2013 A semi-analytical model for the combined aeroelastic behaviour and gust response of a flexible aerofoil. J. Fluids Struct. 38, 321.CrossRefGoogle Scholar
Bisplinghoff, R.L., Ashley, H. & Halfman, R.L. 1996 Aeroelasticity. Dover.Google Scholar
Chin, D.D. & Lentink, D. 2016 Flapping wing aerodynamics: from insects to vertebrates. J. Expl Biol. 219 (7), 920932.CrossRefGoogle ScholarPubMed
Drischler, J.A. 1956 Calculation and compilation of the unsteady-lift functions for a rigid wing subjected to sinusoidal gusts and to sinusoidal sinking oscillations. NASA Tech. Rep. TN 3748.Google Scholar
Edwards, J.W. 1979 Unsteady aerodynamic modeling for arbitrary motions. AIAA J. 17 (4), 365374.CrossRefGoogle Scholar
Elbanhawi, M., Mohamed, A., Clothier, R., Palmer, J.L., Simic, M. & Watkins, S. 2017 Enabling technologies for autonomous MAV operations. Prog. Aerosp. Sci. 91, 2752.CrossRefGoogle Scholar
Eldredge, J.D. & Jones, A.R. 2019 Leading-edge vortices: mechanics and modeling. Annu. Rev. Fluid Mech. 51, 75104.CrossRefGoogle Scholar
Gopalakrishnan, P. & Tafti, D.K. 2010 Effect of wing flexibility on lift and thrust production in flapping flight. AIAA J. 48 (5), 865877.CrossRefGoogle Scholar
Gordnier, R.E. 2009 High-fidelity computational simulation of a membrane wing airfoil. J. Fluids Struct. 25 (5), 897917.CrossRefGoogle Scholar
Hassanalian, M. & Abdelkefi, A. 2017 Classifications, applications, and design challenges of drones: a review. Prog. Aerosp. Sci. 91, 99131.CrossRefGoogle Scholar
Hedenström, A. & Johansson, L.C. 2015 Bat flight: aerodynamics, kinematics and flight morphology. J. Expl Biol. 218 (5), 653663.CrossRefGoogle ScholarPubMed
Iosilevskii, G. 2007 Control with trim tabs and history-dependent aerodynamic forces. J. Fluids Struct. 23 (3), 365389.CrossRefGoogle Scholar
Jaworski, J.W. & Gordnier, R.E. 2012 High-order simulations of low Reynolds number membrane airfoils under prescribed motion. J. Fluids Struct. 31, 4966.CrossRefGoogle Scholar
Jaworski, J.W. & Gordnier, R.E. 2015 Thrust augmentation of flapping airfoils in low Reynolds number flow using a flexible membrane. J. Fluids Struct. 52, 199209.CrossRefGoogle Scholar
Jones, A.R. 2020 Gust encounters of rigid wings: taming the parameter space. Phys. Rev. Fluids 5, 110513.CrossRefGoogle Scholar
Jones, A.R., Cetiner, O. & Smith, M.J. 2022 Physics and modeling of large flow disturbances: discrete gust encounters for modern air vehicles. Annu. Rev. Fluid Mech. 54, 469493.CrossRefGoogle Scholar
von Kármán, T. & Sears, W.R. 1938 Airfoil theory for non-uniform motion. J. Aeronaut. Sci. 5 (10), 379390.CrossRefGoogle Scholar
Katz, J. & Plotkin, A. 2001 Low-Speed Aerodynamics, 2nd edn. Cambridge University Press.CrossRefGoogle Scholar
Kornecki, A., Dowell, E.H. & O'Brien, J. 1976 On the aeroelastic instability of two-dimensional panels in uniform incompressible flow. J. Sound Vib. 47 (2), 163178.CrossRefGoogle Scholar
Mavroyiakoumou, C. & Alben, S. 2020 Large-amplitude membrane flutter in inviscid flow. J. Fluid Mech. 891, A23.CrossRefGoogle Scholar
Mavroyiakoumou, C. & Alben, S. 2021 Eigenmode analysis of membrane stability in inviscid flow. Phys. Rev. Fluids 6, 043901.CrossRefGoogle Scholar
Minami, H. 1998 Added mass of a membrane vibrating at finite amplitude. J. Fluids Struct. 12 (7), 919932.CrossRefGoogle Scholar
Mohamed, A., Massey, K., Watkins, S. & Clothier, R. 2014 The attitude control of fixed-wing MAVS in turbulent environments. Prog. Aerosp. Sci. 66, 3748.CrossRefGoogle Scholar
Muijres, F.T., Johansson, L.C., Barfield, R., Wolf, M., Spedding, G.R. & Hedenström, A. 2008 Leading-edge vortex improves lift in slow-flying bats. Science 319 (5867), 12501253.CrossRefGoogle ScholarPubMed
Nielsen, J.N. 1963 Theory of flexible aerodynamic surfaces. J. Appl. Mech. 30, 435442.CrossRefGoogle Scholar
Rao, S.S. 2007 Vibration of Continuous Systems. John Wiley & Sons, Ltd.Google Scholar
Rojratsirikul, P., Wang, Z. & Gursul, I. 2009 Unsteady fluid–structure interactions of membrane airfoils at low Reynolds numbers. Exp. Fluids 46, 859872.CrossRefGoogle Scholar
Rojratsirikul, P., Wang, Z. & Gursul, I. 2010 Effect of pre-strain and excess length on unsteady fluid–structure interactions of membrane airfoils. J. Fluids Struct. 26, 359376.CrossRefGoogle Scholar
Schwarz, L. 1940 Berechnung der Druckverteilung einer harmonisch sich verformenden Tragfläche in ebener Strömung. Luftfahrtforschung 17, 379386.Google Scholar
Sears, W.R. 1940 Operational methods in the theory of airfoils in non-uniform motion. J. Franklin Inst. 230 (1), 95111.CrossRefGoogle Scholar
Serrano-Galiano, S., Sandham, N.D. & Sandberg, R.D. 2018 Fluid–structure coupling mechanism and its aerodynamic effect on membrane aerofoils. J. Fluid Mech. 848, 11271156.CrossRefGoogle Scholar
Shyy, W., Aono, H., Kang, C. & Liu, H. 2013 An Introduction to Flapping Wing Aerodynamics. Cambridge University Press.CrossRefGoogle Scholar
Shyy, W., Kang, C., Chirarattananon, P., Ravi, S. & Liu, H. 2016 Aerodynamics, sensing and control of insect-scale flapping-wing flight. Proc. R. Soc. A 472 (2186), 20150712.CrossRefGoogle ScholarPubMed
Söhngen, H. 1939 Die Lösungen der Integralgleichung und deren Anwendung in der Tragflügeltheorie. Math. Z. 45, 245264.CrossRefGoogle Scholar
Song, A., Tian, X., Israeli, E., Galvao, R., Bishop, K., Swartz, S. & Breuer, K. 2008 Aeromechanics of membrane wings with implications for animal flight. AIAA J. 46 (8), 20962106.CrossRefGoogle Scholar
Sygulski, R. 2007 Stability of membrane in low subsonic flow. Intl J. Non-Linear Mech. 42 (1), 196202.CrossRefGoogle Scholar
Tiomkin, S. & Raveh, D.E. 2017 On the stability of two-dimensional membrane wings. J. Fluids Struct. 71, 143163.CrossRefGoogle Scholar
Tiomkin, S. & Raveh, D.E. 2021 A review of membrane-wing aeroelasticity. Prog. Aerosp. Sci. 126, 100738.CrossRefGoogle Scholar
Tregidgo, L., Wang, Z. & Gursul, I. 2013 Unsteady fluid–structure interactions of a pitching membrane wing. Aerosp. Sci. Technol. 28 (1), 7990.CrossRefGoogle Scholar
Valsa, J. & Branc̆ik, L. 1998 Approximate formulae for numerical inversion of Laplace transforms. Intl J. Numer. Model. 11 (3), 153166.3.0.CO;2-C>CrossRefGoogle Scholar
Wagner, H. 1925 Über die Entstehung des dynamishen Auftriebes von Tragflügeln. Z. Angew Math. Mech. 5, 1735.CrossRefGoogle Scholar
Watkins, S., Milbank, J., Loxton, B.J. & Melbourne, W.H. 2006 Atmospheric winds and their implications for microair vehicles. AIAA J. 44 (11), 25912600.CrossRefGoogle Scholar
Yadykin, Y., Tenetov, V. & Levin, D. 2003 The added mass of a flexible plate oscillating in a fluid. J. Fluids Struct. 17 (1), 115123.CrossRefGoogle Scholar