Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T17:12:17.893Z Has data issue: false hasContentIssue false

Universality of shear-banding instability and crystallization in sheared granular fluid

Published online by Cambridge University Press:  25 November 2008

MEHEBOOB ALAM*
Affiliation:
Engineering Mechanics Unit, Jawaharlal Nehru Center for Advanced Scientific ResearchJakkur PO Bangalore 560064, India
PRIYANKA SHUKLA
Affiliation:
Engineering Mechanics Unit, Jawaharlal Nehru Center for Advanced Scientific ResearchJakkur PO Bangalore 560064, India
STEFAN LUDING
Affiliation:
MultiScale Mechanics, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
*
Email address for correspondence: [email protected]

Abstract

The linear stability analysis of an uniform shear flow of granular materials is revisited using several cases of a Navier–Stokes-level constitutive model in which we incorporate the global equation of states for pressure and thermal conductivity (which are accurate up to the maximum packing density νm) and the shear viscosity is allowed to diverge at a density νμ (<νm), with all other transport coefficients diverging at νm. It is shown that the emergence of shear-banding instabilities (for perturbations having no variation along the streamwise direction), that lead to shear-band formation along the gradient direction, depends crucially on the choice of the constitutive model. In the framework of a dense constitutive model that incorporates only collisional transport mechanism, it is shown that an accurate global equation of state for pressure or a viscosity divergence at a lower density or a stronger viscosity divergence (with other transport coefficients being given by respective Enskog values that diverge at νm) can induce shear-banding instabilities, even though the original dense Enskog model is stable to such shear-banding instabilities. For any constitutive model, the onset of this shear-banding instability is tied to a universal criterion in terms of constitutive relations for viscosity and pressure, and the sheared granular flow evolves toward a state of lower ‘dynamic’ friction, leading to the shear-induced band formation, as it cannot sustain increasing dynamic friction with increasing density to stay in the homogeneous state. A similar criterion of a lower viscosity or a lower viscous-dissipation is responsible for the shear-banding state in many complex fluids.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ackerson, B. J. & Clark, N. A. 1984 Shear-induced partial translational ordering of a colloidal solid. Phys. Rev. A 30, 906.CrossRefGoogle Scholar
Alam, M. 2005 Universal unfolding of pitchfork bifurcations and the shear-band formation in rapid granular Couette flow. In Trends in Applications of Mathematics to Mechanics (ed. Wang, Y. & Hutter, K.), pp. 1120. Shaker, Aachen.Google Scholar
Alam, M. 2006 Streamwise structures and density patterns in rapid granular Couette flow: a linear stability analysis. J. Fluid Mech. 553, 1.CrossRefGoogle Scholar
Alam, M. 2008 Dynamics of sheared granular fluid. In Proc. 12th Asian Congress of Fluid Mechanics, 18–21 August, Daejeon, Korea (ed. Sung, H. J.), pp. 1–6.Google Scholar
Alam, M. & Luding, S. 2003 a Rheology of bidisperse granular mixture via event-driven simulations. J. Fluid Mech. 476, 69.CrossRefGoogle Scholar
Alam, M. & Luding, S. 2003 b First normal stress difference and crystallization in a dense sheared granular fluid. Phys. Fluids 15, 2298.CrossRefGoogle Scholar
Alam, M. & Luding, S. 2005 Energy noequipartition, rheology and microstructure in sheared bidisperse granular mixtures. Phys. Fluids 17, 063303.CrossRefGoogle Scholar
Alam, M. & Nott, P. R. 1997 The influence of friction on the stability of unbounded granular shear flow. J. Fluid Mech. 343, 267.CrossRefGoogle Scholar
Alam, M. & Nott, P. R. 1998 Stability of plane Couette flow of a granular material. J. Fluid Mech. 377, 99.CrossRefGoogle Scholar
Alam, M., Arakeri, V., Goddard, D., Nott, P. & Herrmann, H. 2005 Instability-induced ordering, universal unfolding and the role of gravity in granular Couette flow. J. Fluid Mech. 523, 277.CrossRefGoogle Scholar
Campbell, C. S. 1990 Rapid granular flows. Annu. Rev. Fluid Mech. 22, 57.CrossRefGoogle Scholar
Caserta, S., Simeone, M. & Guido, S. 2008 Shearbanding in biphasic liquid–liquid systems. Phys. Rev. Lett. 100, 137801.CrossRefGoogle Scholar
Conway, S. & Glasser, B. J. 2004 Density waves and coherent structures in granular Couette flow. Phys. Fluids 16, 509.CrossRefGoogle Scholar
Erpenbeck, J. 1984 Shear viscosity of the hard sphere fluid via non-equilibrium molecular dynamics. Phys. Rev. Lett. 52, 1333.CrossRefGoogle Scholar
Evans, D. J. & Morriss, G. P. 1986 Shear thickening and turbulence in simple fluids. Phys. Rev. Lett. 56, 2172.CrossRefGoogle ScholarPubMed
Garcia-Rojo, R., Luding, S. & Brey, J. J. 2006 Transport coefficients for dense hard-disk systems. Phys. Rev. E 74, 061305.Google ScholarPubMed
Gass, D. M. 1971 Enskog theory for a rigid disk fluid. J. Chem. Phys. 54, 1898.CrossRefGoogle Scholar
Gayen, B. & Alam, M. 2006 Algebraic and exponential instabilities in a sheared micropolar granular fluid. J. Fluid Mech. 567, 195.CrossRefGoogle Scholar
Gayen, B. & Alam, M. 2008 Orientational correlation and velocity distributions in uniform shear flow of a dilute granular gas. Phys. Rev. Lett. 100, 068002.CrossRefGoogle ScholarPubMed
de Gennes, P. G. 1974 Coil-stretch transition of dilute flexible polymers under ultra-high gradients. J. Chem. Phys. 60, 5030.CrossRefGoogle Scholar
Greco, F. & Ball, R. C. 1997 Shear-band formation in a non-Newtonian fluid model with a constitutive instability. J. Non-Newtonian Fluid Mech. 69, 195.CrossRefGoogle Scholar
Goldhirsch, I. 2003 Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267.CrossRefGoogle Scholar
Haff, P. K. 1983 Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401.CrossRefGoogle Scholar
Henderson, D. 1975 A simple equation of state for hard discs. Mol. Phys. 30, 971.CrossRefGoogle Scholar
Hoffman, R. L. 1972 Discontinuous and dilatant viscosity behaviour in concentrated suspensions. I. Observation of a flow instability. Trans. Soc. Rheol. 16, 155.CrossRefGoogle Scholar
Hopkins, M. & Louge, M. Y. 1991 Inelastic microstructure in rapid granular flows of smooth disks. Phys. Fluids A 3, 47.CrossRefGoogle Scholar
Jenkins, J. T. & Richman, M. W. 1985 Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids 28, 3485.CrossRefGoogle Scholar
Kirkpatrick, T. R. & Nieuwoudt, J. C. 1986 Stability analysis of a dense hard-sphere fluid subjected to large shear-induced ordering. Phys. Rev. Lett. 56, 885.CrossRefGoogle Scholar
Khain, E. 2007 Hydrodynamics of fluid–solid coexistence in dense shear granular flow. Phys. Rev. E 75, 051310.Google ScholarPubMed
Khain, E. & Meerson, B. 2006 Shear-induced crystallization of a dense rapid granular flow: hydrodynamics beyond the melting point. Phys. Rev. E 73, 061301.Google ScholarPubMed
Lee, M., Dufty, J. W., Montanero, J. M., Santos, A. & Lutsko, J. F. 1996 Long wavelength instability for uniform shear flow. Phys. Rev. Lett. 76, 2702.CrossRefGoogle ScholarPubMed
Lettinga, M. P. & Dhont, J. K. G. 2004 Non-equilibrium phase behaviour of rodlike viruses under shear flow. J. Phys. Cond. Matter 16, S3929.CrossRefGoogle Scholar
Loose, W. & Hess, S. 1989 Rheology of dense model fluids via nonequilibrium molecular dynamics: shear-thinning and ordering transition. Rheol. Acta 28, 101.CrossRefGoogle Scholar
Losert, W., Bocquet, L., Lubensky, T. C. & Gollub, J. P. 2000 Particle dynamics in sheared granular matter. Phys. Rev. Lett. 85, 1428.CrossRefGoogle ScholarPubMed
Luding, S. 2001 Global equation of state of two-dimensional hard-sphere systems. Phys. Rev. E 63, 042201.Google ScholarPubMed
Luding, S. 2002 Liquid–solid transition in bidisperse granulates. Adv. Complex Syst. 4, 379.CrossRefGoogle Scholar
Luding, S. 2008 From dilute to very dense granular media. Preprint.Google Scholar
Lun, C. K. K., Savage, S. B., Jeffrey, D. J. & Chepurniy, N. 1984 Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flow field. J. Fluid Mech. 140, 223.CrossRefGoogle Scholar
Lutsko, J. F. & Dufty, J. W. 1986 Possible instability for shear-induced order-disorder transition. Phys. Rev. Lett. 57, 2775.CrossRefGoogle Scholar
McNamara, S. 1993 Hydrodynamic modes of a uniform granular medium. Phys. Fluids A 5, 3056.CrossRefGoogle Scholar
Mueth, D. M., Debregeas, G. F., Karczmar, G. S., Eng, P. J., Nagel, S. & Jaeger, H. J. 2000 Signatures of granular microstructure in dense shear flows. Nature 406, 385.CrossRefGoogle ScholarPubMed
Nott, P. R., Alam, M., Agrawal, K., Jackson, R. & Sundaresan, S. 1999 The effect of boundaries on the plane Couette flow of granular materials: a bifurcation analysis. J. Fluid Mech. 397, 203.CrossRefGoogle Scholar
Olmsted, P. D. 2008 Perspective on shear banding in complex fluids. Rheol. Acta 47, 283.CrossRefGoogle Scholar
Saitoh, K. & Hayakawa, H. 2007 Rheology of a granular gas under a plane shear. Phys. Rev. E 75, 021302.Google Scholar
Savage, S. B. & Sayed, S. 1984 Stresses developed by dry cohesionless granular materials sheared in an annular shear cell. J. Fluid Mech. 142, 391.CrossRefGoogle Scholar
Sela, N. & Goldhirsch, I. 1998 Hydrodynamic equations for rapid shear flows of smooth inelastic spheres, to Burnett order. J. Fluid Mech. 361, 41.CrossRefGoogle Scholar
Shukla, P. & Alam, M. 2008 Nonlinear stability of granular shear flow: Landau equation, shearbanding and universality. In Proc. Intl Conf. on Theoretical and Applied Mechanics, 24–29 August, Adelaide, Australia. ISBN 978-0-9805142-0-9.Google Scholar
Spenley, N. A., Cates, M. E. & McLeish, T. C. B. 1993 Nonlinear rheology of wormlike micelles. Phys. Rev. Lett. 71, 939.CrossRefGoogle ScholarPubMed
Tan, M. & Goldhirsch, I. 1997 Intercluster interactions in rapid granular shear flows. Phys. Fluids 9, 856.CrossRefGoogle Scholar
Torquato, S. 1995 Nearest-neighbour statistics for packings of hard spheres and disks. Phys. Rev. E 51, 3170.Google Scholar
Tsai, J. C., Voth, G. A. & Gollub, J. P. 2003 Internal granular dynamics, shear-induced crystallization, and compaction steps. Phys. Rev. Lett. 91, 064301.CrossRefGoogle ScholarPubMed
Varnik, F., Bocquet, L., Barrat, J.-L. & Berthier, L. 2003 Shear localization in model glass. Phys. Rev. Lett. 90, 095702.CrossRefGoogle ScholarPubMed
Volfson, D., Tsimring, L. S. & Aranson, I. S. 2003 Partially fluidized shear granular flows: continuum theory and molecular dynamics simulations. Phys. Rev. E 68, 021301.Google ScholarPubMed
Wilson, H. J. & Fielding, S. M. 2005 Linear instability of planer shear banded flow of both diffusive and non-diffusive Johnson–Segelman fluids. J. Non-Newtonian Fluid Mech. 138, 181.CrossRefGoogle Scholar