Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T16:19:44.613Z Has data issue: false hasContentIssue false

Two-dimensional patterns in Rayleigh-Taylor instability of a thin layer

Published online by Cambridge University Press:  26 April 2006

M. Fermigier
Affiliation:
Laboratoire d'Hydrodynamique et Mécanique Physique, Ecole Supérieure de Physique et Chimie de Paris, 10, rue Vauquelin, 75231 Paris Cedex 05, France
L. Limat
Affiliation:
Laboratoire d'Hydrodynamique et Mécanique Physique, Ecole Supérieure de Physique et Chimie de Paris, 10, rue Vauquelin, 75231 Paris Cedex 05, France Laboratoire de Physico-Chimie Théorique, Ecole Supérieure de Physique et Chimie de Paris, 10, rue Vauquelin, 75231 Paris Cedex 05, France
J. E. Wesfreid
Affiliation:
Laboratoire d'Hydrodynamique et Mécanique Physique, Ecole Supérieure de Physique et Chimie de Paris, 10, rue Vauquelin, 75231 Paris Cedex 05, France
P. Boudinet
Affiliation:
Laboratoire d'Hydrodynamique et Mécanique Physique, Ecole Supérieure de Physique et Chimie de Paris, 10, rue Vauquelin, 75231 Paris Cedex 05, France
C. Quilliet
Affiliation:
Laboratoire d'Hydrodynamique et Mécanique Physique, Ecole Supérieure de Physique et Chimie de Paris, 10, rue Vauquelin, 75231 Paris Cedex 05, France

Abstract

We study experimentally and theoretically the evolution of two-dimensional patterns in the Rayleigh—Taylor instability of a thin layer of viscous fluid spread on a solid surface. Various kinds of patterns of different symmetries are observed, with possible transition between patterns, the preferred symmetries being the axial and hexagonal ones. Starting from the lubrication hypothesis, we derive the nonlinear evolution equation of the interface, and the amplitude equation of its Fourier components. The evolution laws of the different patterns are calculated at order two or three, the preferred symmetries being related to the non-invariance of the system by amplitude reflection. We also discuss qualitatively the dripping at final stage of the instability.

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions. Dover.
Babchin, A. J., Frenkel, A. L., Levich, B. G. & Sivashinsky, G. I. 1983 Phys. Fluids 26, 3159.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Benney D, J. 1966 J. Math. Phys. 45, 150.
Berenson, J. 1962 Intl J. Heat Mass Transfer 5, 985.
Boudouvis, A. G. & Scriven, L. E. 1990 J. Magn. Magn. Mat. 85, 155.
Brown, H. R. 1989 Phys. Fluids A 1, 896.
Busse, F. H. 1978 Rep. Prog. Phys. 41, 1929.
Buzano, E. & Golubitsky, M. 1983 Phil. Trans. R. Soc. Lond. A 308, 617.
Chandrasekhar, S. 1981 Hydrodynamic and Hydromagnetic Stability. Dover.
Cloitre, M. 1989 Agrégation de particules à deux dimensions induite par la capillarité. Thesis, University de Paris 6.
Cowley, M. D. & Rosensweig, R. E. 1967 J. Fluid Mech. 30, 671.
Dewel, G., Borckmans, P. & Walgraef, D. 1984 In Chemical Instabilities (ed. G. Nivcolis & F. Baras), NATO ASI Series C120. Reidel.
Fermigier, M., Limat, L., Wesfreid, J. E., Boudinet, P., Quilliet, C. & Ghidaglia, C. 1991 In Growth and Form: Non Linear Aspects (ed. M. Benamar, P. Pelcé & P. Tabling). Plenum.
Gailitis, A. 1977 J. Fluid Mech. 82, 401.
Gauglitz, P. A. & Radke, C. J. 1988 Chem. Engng Sci. 43, 1457.
Haken, H. 1975 Rev. Mod. Phys. 47, 67.
Hammond, P. S. 1983 J. Fluid Mech. 137, 363.
Huppert, H. E. 1982 J. Fluid Mech. 121, 43.
Hynes, T. P. 1878 Stability of thin films. Ph.d. thesis, Cambridge University.
Iooss, G. & Rossi, M. 1989 Eur. J. Mech. B 8, 1.
Jacobs, J. W. & Catton, I. 1988a J. Fluid Mech. 187, 329.
Jacobs, J. W. & Catton, I. 1988b J. Fluid Mech. 187, 353.
Kuramoto, Y. 1984 Chemical Oscillations, Waves and Turbulence. Springer.
Leblond, P. H. & Mainardi, F. 1987 Acta Mech. 68, 203.
Limat, L., Jenffer, P., Dagens, B., Touron, E., Fermigier, M. & Wesfreid, J. E. 1992 Physica D (submitted).
Lister, J. R. & Kerr, R. C. 1989 J. Fluid Mech. 203, 215.
Manneville, P. 1988 In Propagation in Systems Far from Equilibrium (ed. J. E. Wesfreid, H. R. Brand, P. Manneville, G. Albinet and N. Boccara). Springer.
Mitescu, C., Limat, L. & Wesfreid, J. E. 1990 Bull. Am. Phys. Soc. 35, 2277.
Myshkis, A. D., Babskii, V. G., Kopachevskii, N. D., Slobozhanin, L. A. & Tyupstov, A. D. 1987 Low Gravity Fluid Mechanics. Springer.
Nettleton, L. L. 1934 Bull Am. Petrol. Geol. 18, 175.
Nicolson, M. M. 1949 Proc. Camb. Soc. 45, 288.
Normand, C. 1984 J. Fluid Mech. 143, 223.
Oron, A. & Rosenau, P. 1989a Phys. Fluids A 1, 1155.
Oron, A. & Rosenau, P. 1989b Phys. Fluids A 1, 1763.
Palm, E. 1975 Ann. Rev. Fluid Mech. 7, 39.
Pismen, L. M. 1983 Ann. N.Y. Acad. Sci. 404, 135.
Saffman, P. G. & Taylor, G. I. 1958 Proc. R. Soc. Lond. A 245, 312.
Sainson, J. 1989 Contribution à l’étude des transitions rapides de phase. Thesis, University de Paris 6.
Sainson, J., Baradel, C., Roulleau, M., Leblond, J. & Hakim, V. 1990 In Proc. Euritherm Seminar 14, Heat Transfer and Major Technological Hazards, 15–17 May, vol. 1. Louvain-La-Neuve (belgium).
Tan, M. J. 1986 J. Fluid Mech. 170, 339.
Taylor, G. I. 1950 Proc. R. Soc. Lond. A 201, 192.
Valet, T. & Wesfreid, J. E. 1989 In Proc. Euromech 240 (ed. D. G. Crighton & F. Mainardi). University of Bologna.
Vrij, A. 1966 Discuss. Faraday Soc. 42, 23.
Wesfreid, J. E. & Allais, D. 1985 Bull. Soc. Fr. Phys. Suppl. 57, 20.
Wesfreid, J. E. & Zaleski, S. 1984 In Cellular Structures in Instabilities. Lectures Notes in Physics, vol. 201. Springer.
Whitehead, J. A. 1988 Ann. Rev. Fluid Mech. 20, 61.
Whitehead, J. A. & Luther, D. S. 1975 J. Geophys. Res. 80, 705.
Yiantsios, S. G. & Higgins, B. G. 1989 Phys. Fluids A 1, 1484.