Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-02T18:39:46.600Z Has data issue: false hasContentIssue false

Twin forces: similarity between rotation and stratification effects on wall turbulence

Published online by Cambridge University Press:  22 January 2024

Shengqi Zhang*
Affiliation:
Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315201, PR China
Chao Sun
Affiliation:
Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of MoE, and Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
*
Email address for correspondence: [email protected]

Abstract

Can the similarity between rotation and stratification provide quantitative predictions for complex turbulence? In this work, we focus on plane Couette turbulence as the background flow, which allows us to eliminate the key differences between Rayleigh–Bénard and Taylor–Couette turbulence, and facilitates a quantitative mapping across many complex turbulent systems involving rotation, stratification and curvature effects. To characterize the separated or coupled effects of rotation and stratification, we introduce an overall Richardson number ${Ri}_\chi$ which is the sum of the Coriolis Richardson number $Ri_\theta$ and the buoyancy Richardson number $Ri_T$. When the Prandtl number $Pr=1$, the heat and inertial-frame momentum transport almost coincide and mainly depend on ${Ri}_\chi$ and the Reynolds number, regardless of the specific ratio between $Ri_\theta$ and $Ri_T$. When $Pr$ varies, the weighted average ${Nu}_\chi$ of the transport coefficients can still remain approximately invariant in most cases. Furthermore, the large-scale structures in purely rotating and purely stratified cases exhibit strikingly similar features. These findings not only indicate a more reasonable analogy for the ultimate Taylor–Couette turbulence but also pave the way for developing new predictive models for natural and industrial processes.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Rev. Mod. Phys. 81 (2), 503537.CrossRefGoogle Scholar
Alfredsson, P.H. & Tillmark, N. 2005 Instability, transition and turbulence in plane Couette flow with system rotation. In IUTAM Symposium on Laminar-Turbulent Transition and Finite Amplitude Solutions, pp. 173–193. Springer.CrossRefGoogle Scholar
Bech, K.H. & Andersson, H.I. 1996 Secondary flow in weakly rotating turbulent plane Couette flow. J. Fluid Mech. 317, 195214.CrossRefGoogle Scholar
Bech, K.H. & Andersson, H.I. 1997 Turbulent plane Couette flow subject to strong system rotation. J. Fluid Mech. 347, 289314.CrossRefGoogle Scholar
Blass, A., Tabak, P., Verzicco, R., Stevens, R.J.A.M. & Lohse, D. 2021 The effect of Prandtl number on turbulent sheared thermal convection. J. Fluid Mech. 910, A37.CrossRefGoogle Scholar
Blass, A., Zhu, X., Verzicco, R., Lohse, D. & Stevens, R.J.A.M. 2020 Flow organization and heat transfer in turbulent wall sheared thermal convection. J. Fluid Mech. 897, A22.CrossRefGoogle ScholarPubMed
Boussinesq, J. 1903 Théorie analytique de la chaleur mise en harmonic avec la thermodynamique et avec la théorie mécanique de la lumière: Tome I-[II], vol. 2. Gauthier-Villars.Google Scholar
Bradshaw, P. 1969 The analogy between streamline curvature and buoyancy in turbulent shear flow. J. Fluid Mech. 36 (1), 177191.CrossRefGoogle Scholar
Brauckmann, H.J., Eckhardt, B. & Schumacher, J. 2017 Heat transport in Rayleigh–Bénard convection and angular momentum transport in Taylor–Couette flow: a comparative study. Phil. Trans. R. Soc. A 375 (2089), 20160079.CrossRefGoogle ScholarPubMed
Brauckmann, H.J., Salewski, M. & Eckhardt, B. 2016 Momentum transport in Taylor–Couette flow with vanishing curvature. J. Fluid Mech. 790, 419452.CrossRefGoogle Scholar
Brethouwer, G. 2018 Passive scalar transport in rotating turbulent channel flow. J. Fluid Mech. 844, 297322.CrossRefGoogle Scholar
Brethouwer, G. 2021 Much faster heat/mass than momentum transport in rotating Couette flows. J. Fluid Mech. 912, A31.CrossRefGoogle Scholar
Brethouwer, G. 2023 Strong dissimilarity between heat and momentum transfer in rotating Couette flows. Intl J. Heat Mass Transfer 205, 123920.CrossRefGoogle Scholar
Busse, F.H. 2012 The twins of turbulence research. Physics 5 (4), 13.CrossRefGoogle Scholar
Chandra, M. & Verma, M.K. 2013 Flow reversals in turbulent convection via vortex reconnections. Phys. Rev. Lett. 110 (11), 114503.CrossRefGoogle ScholarPubMed
Deusebio, E., Caulfield, C.P. & Taylor, J.R. 2015 The intermittency boundary in stratified plane Couette flow. J. Fluid Mech. 781, 298329.CrossRefGoogle Scholar
Dubrulle, B., Dauchot, O., Daviaud, F., Longaretti, P.Y., Richard, D. & Zahn, J.P. 2005 Stability and turbulent transport in Taylor–Couette flow from analysis of experimental data. Phys. Fluids 17 (9), 095103.CrossRefGoogle Scholar
Eckhardt, B., Doering, C.R. & Whitehead, J.P. 2020 Exact relations between Rayleigh–Bénard and rotating plane Couette flow in two dimensions. J. Fluid Mech. 903, R4.CrossRefGoogle Scholar
Faisst, H. & Eckhardt, B. 2000 Transition from the Couette–Taylor system to the plane Couette system. Phys. Rev. E 61 (6), 72277230.CrossRefGoogle Scholar
Gai, J., Xia, Z., Cai, Q. & Chen, S. 2016 Turbulent statistics and flow structures in spanwise-rotating turbulent plane Couette flows. Phys. Rev. Fluids 1 (5), 054401.CrossRefGoogle Scholar
Garaud, P. 2018 Double-diffusive convection at low Prandtl number. Annu. Rev. Fluid Mech. 50, 275298.CrossRefGoogle Scholar
van Gils, D.P.M., Huisman, S.G., Bruggert, G.-W., Sun, C. & Lohse, D. 2011 Torque scaling in turbulent Taylor–Couette flow with co-and counterrotating cylinders. Phys. Rev. Lett. 106 (2), 024502.CrossRefGoogle ScholarPubMed
Grossmann, S. & Lohse, D. 2011 Multiple scaling in the ultimate regime of thermal convection. Phys. Fluids 23 (4), 045108.CrossRefGoogle Scholar
Grossmann, S., Lohse, D. & Sun, C. 2016 High-Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48, 5380.CrossRefGoogle Scholar
Grundestam, O., Wallin, S. & Johansson, A.V. 2008 Direct numerical simulations of rotating turbulent channel flow. J. Fluid Mech. 598, 177199.CrossRefGoogle Scholar
Haghshenas, A. & Mellado, J.P. 2019 Characterization of wind-shear effects on entrainment in a convective boundary layer. J. Fluid Mech. 858, 145183.CrossRefGoogle Scholar
Hamba, F. 2006 The mechanism of zero mean absolute vorticity state in rotating channel flow. Phys. Fluids 18 (12), 125104.CrossRefGoogle Scholar
Han, J.-C. 2018 Advanced cooling in gas turbines 2016 Max Jakob memorial award paper. Trans. ASME J. Heat Transfer 140 (11), 113001.CrossRefGoogle Scholar
Hartmann, D.L., Moy, L.A. & Fu, Q. 2001 Tropical convection and the energy balance at the top of the atmosphere. J. Clim. 14 (24), 44954511.2.0.CO;2>CrossRefGoogle Scholar
Huang, Y., Xia, Z. & Chen, S. 2020 Hysteresis behaviour in spanwise rotating plane Couette flow at $Re_w=2600$. J. Turbul. 16, 113.Google Scholar
Huang, Y., Xia, Z., Wan, M., Shi, Y. & Chen, S. 2019 Hysteresis behavior in spanwise rotating plane Couette flow with varying rotation rates. Phys. Rev. Fluids 4 (5), 052401.CrossRefGoogle Scholar
Huisman, S.G., van Gils, D.P.M., Grossmann, S., Sun, C. & Lohse, D. 2012 Ultimate turbulent Taylor–Couette flow. Phys. Rev. Lett. 108 (2), 024501.CrossRefGoogle ScholarPubMed
Huisman, S.G., van der Veen, R.C., Sun, C. & Lohse, D. 2014 Multiple states in highly turbulent Taylor–Couette flow. Nat. Commun. 5 (1), 15.CrossRefGoogle ScholarPubMed
Jeffreys, H. 1928 Some cases of instability in fluid motion. Proc. R. Soc. Lond. Ser. A 118 (779), 195208.Google Scholar
Jiang, H., Wang, D., Liu, S. & Sun, C. 2022 Experimental evidence for the existence of the ultimate regime in rapidly rotating turbulent thermal convection. Phys. Rev. Lett. 129 (20), 204502.CrossRefGoogle ScholarPubMed
Kader, B.A. & Yaglom, A.M. 1990 Mean fields and fluctuation moments in unstably stratified turbulent boundary layers. J. Fluid Mech. 212, 637662.CrossRefGoogle Scholar
Kooij, G.L., Botchev, M.A., Frederix, E.M.A., Geurts, B.J., Horn, S., Lohse, D., van der Poel, E.P., Shishkina, O., Stevens, R.J.A.M. & Verzicco, R. 2018 Comparison of computational codes for direct numerical simulations of turbulent Rayleigh-Bénard convection. Comput. Fluids 166, 18.CrossRefGoogle Scholar
Kraichnan, R.H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5 (11), 13741389.CrossRefGoogle Scholar
Lezius, D.K. & Johnston, J.P. 1976 Roll-cell instabilities in rotating laminar and turbulent channel flows. J. Fluid Mech. 77 (1), 153174.CrossRefGoogle Scholar
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.CrossRefGoogle Scholar
Lutgens, F.K., Tarbuck, E.J. & Tasa, D.G. 2007 The Atmosphere: An Introduction to Meteorology. Pearson.Google Scholar
Monin, A.S. & Obukhov, A.M. 1954 Basic laws of turbulent mixing in the surface layer of the atmosphere. Trans. Geophys. Inst. Acad. Sci. USSR 151 (163), e187.Google Scholar
Obukhov, A. 1946 Turbulence in thermally inhomogeneous atmosphere. Trudy Inst. Teor. Geofiz. Akad. Nauk SSSR 1, 95115.Google Scholar
Ostilla-Mónico, R., van der Poel, E.P., Verzicco, R., Grossmann, S. & Lohse, D. 2014 Exploring the phase diagram of fully turbulent Taylor–Couette flow. J. Fluid Mech. 761, 126.CrossRefGoogle Scholar
Pirozzoli, S., Bernardini, M., Verzicco, R. & Orlandi, P. 2017 Mixed convection in turbulent channels with unstable stratification. J. Fluid Mech. 821, 482516.CrossRefGoogle Scholar
Prandtl, L. 1932 Meteorogische an wendung der stromungslehre. Beitr. Phys. Atomos. 19, 188202.Google Scholar
Schumacher, J. & Sreenivasan, K.R. 2020 Colloquium: unusual dynamics of convection in the Sun. Rev. Mod. Phys. 92 (4), 041001.CrossRefGoogle Scholar
Tanaka, M., Kida, S., Yanase, S. & Kawahara, G. 2000 Zero-absolute-vorticity state in a rotating turbulent shear flow. Phys. Fluids 12 (8), 19791985.CrossRefGoogle Scholar
Taylor, G.I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. Ser. A 223 (605-615), 289343.Google Scholar
Tillmark, N. & Alfredsson, P.H. 1996 Experiments on Rotating Plane Couette Flow, pp. 391–394. Springer.CrossRefGoogle Scholar
Tsukahara, T., Tillmark, N. & Alfredsson, P.H. 2010 Flow regimes in a plane Couette flow with system rotation. J. Fluid Mech. 648, 533.CrossRefGoogle Scholar
Turner, J.S. 1979 Buoyancy Effects in Fluids. Cambridge University Press.Google Scholar
Veronis, G. 1970 The analogy between rotating and stratified fluids. Annu. Rev. Fluid Mech. 2 (1), 3766.CrossRefGoogle Scholar
Wang, B.-F., Zhou, Q. & Sun, C. 2020 Vibration-induced boundary-layer destabilization achieves massive heat-transport enhancement. Sci. Adv. 6 (21), eaaz8239.CrossRefGoogle ScholarPubMed
Wyngaard, J.C. 1992 Atmospheric turbulence. Annu. Rev. Fluid Mech. 24 (1), 205234.CrossRefGoogle Scholar
Yang, Y., Verzicco, R. & Lohse, D. 2016 Vertically bounded double diffusive convection in the finger regime: comparing no-slip versus free-slip boundary conditions. Phys. Rev. Lett. 117 (18), 184501.CrossRefGoogle ScholarPubMed
You, R., Li, H., Tao, Z. & Wei, K. 2018 Measurement of the mean flow field in a smooth rotating channel with Coriolis and buoyancy effects. J. Turbomach. 140 (4), 041002.CrossRefGoogle Scholar
Young, R.M.B. & Read, P.L. 2017 Forward and inverse kinetic energy cascades in Jupiter's turbulent weather layer. Nat. Phys. 13 (11), 11351140.CrossRefGoogle Scholar
Zhang, S., Xia, Z. & Chen, S. 2022 Flow structures in spanwise rotating plane Poiseuille flow based on thermal analogy. J. Fluid Mech. 933, A24.CrossRefGoogle Scholar
Zhang, S., Xia, Z., Shi, Y. & Chen, S. 2019 A two-dimensional-three-component model for spanwise rotating plane Poiseuille flow. J. Fluid Mech. 880, 478496.CrossRefGoogle Scholar
Zhou, Q., Taylor, J.R. & Caulfield, C.-C.P. 2017 Self-similar mixing in stratified plane Couette flow for varying Prandtl number. J. Fluid Mech. 820, 86120.CrossRefGoogle Scholar
Zhu, X., Stevens, R.J.A.M., Shishkina, O., Verzicco, R. & Lohse, D. 2019 $Nu\sim Ra^{1/2}$ scaling enabled by multiscale wall roughness in Rayleigh–Bénard turbulence. J. Fluid Mech. 869, R4.CrossRefGoogle Scholar
Zhu, X., Verschoof, R.A., Bakhuis, D., Huisman, S.G., Verzicco, R., Sun, C. & Lohse, D. 2018 Wall roughness induces asymptotic ultimate turbulence. Nat. Phys. 14 (4), 417423.CrossRefGoogle Scholar