Published online by Cambridge University Press: 20 April 2006
An experimental study has been made of the development of a turbulent boundary layer in an adverse pressure gradient after an interaction with a normal shock wave that was strong enough to separate the boundary layer locally. The pressure gradient applied to the layer was additional to the pressure gradients induced by the shock wave. Measurements were taken for several hundreds of layer thicknesses downstream of the interaction. To separate the effects of shock wave and pressure gradient a second set of observations were made in a reference layer that developed in the same adverse pressure gradient without first interacting with a normal shock wave. It is shown that the adverse pressure gradient impressed on the flow downstream of the shock has a major effect on the structure of the interaction region and the growth of the layer through it. Consequently, existing results for interactions without a postshock pressure gradient should not be used as a model for predicting practical flows, which typically have strong pressure gradients applied downstream of the shock wave. It is also shown that the shock wave produces a pronounced stabilizing effect on the downstream flow, which can be attributed to the streamwise vortices shed into the flow from the separated region formed by the shock wave. The implications of this result for nominally two-dimensional flow situations and to flows involving weak interactions without local separations are discussed.