Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-20T18:02:03.025Z Has data issue: false hasContentIssue false

The turbulent wake of a towed grid in a stratified fluid

Published online by Cambridge University Press:  19 June 2015

X. Xiang
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles,  CA 90089, USA
T. J. Madison
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles,  CA 90089, USA
P. Sellappan
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles,  CA 90089, USA
G. R. Spedding*
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles,  CA 90089, USA
*
Email address for correspondence: [email protected]

Abstract

In a stable background density gradient, initially turbulent flows eventually evolve into a state dominated by low-Froude-number dynamics and frequently also contain persistent pattern information. Much empirical evidence has been gathered on these latter stages, but less on how they first got that way, and how information on the turbulence generator may potentially be encoded into the flow in a robust and long-lasting fashion. Here an experiment is described that examines the initial stages of evolution in the vertical plane of a turbulent grid-generated wake in a stratified ambient. Refractive-index-matched fluids allow optically based measurement of early ($Nt<2$) stages of the flow, even when there are strong variations in the local density gradient field. Suitably averaged flow measures show the interplay between internal wave motions and Kelvin–Helmholtz-generated vortical modes. The vertical shear is dominant at the wake edge, and the decay of horizontal vorticity is observed to be independent of $\mathit{Fr}$. Stratified turbulence, originating from Kelvin–Helmholtz instabilities, develops up to non-dimensional time $Nt\approx 10$, and the scale separation between Ozmidov and Kolmogorov scales is independent of $\mathit{Fr}$ at higher $Nt$. The detailed measurements in the near wake, with independent variation of both Reynolds and Froude numbers, while limited to one particular case, are sufficient to show that the initial turbulence in a stratified fluid is neither three-dimensional nor universal. The search for appropriately generalizable initial conditions may be more involved than hoped for.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Augier, P. & Billant, P. 2011 Onset of secondary instabilities on the zigzag instability in stratified fluids. J. Fluid Mech. 682, 120131.Google Scholar
Augier, P., Billant, P., Negretti, M. & Chomaz, J.-M. 2014 Experimental study of stratified turbulence forced with columnar dipoles. Phys. Fluids 26, 046603.Google Scholar
Augier, P., Chomaz, J.-M. & Billant, P. 2012 Spectral analysis of the transition to turbulence from a dipole in stratified fluid. J. Fluid Mech. 713, 86108.Google Scholar
Billant, P. 2010 Zigzag instability of vortex pairs in stratified and rotating fluids. Part 1. General stability equations. J. Fluid Mech. 660, 354395.CrossRefGoogle Scholar
Billant, P., Deloncle, A., Chomaz, J. M. & Otheguy, P. 2010 Zigzag instability of vortex pairs in stratified and rotating fluids. Part 2. Analytical and numerical analyses. J. Fluid Mech. 660, 396429.Google Scholar
Bonneton, P., Chomaz, J. M., Hopfinger, E. J. & Perrier, M. 1996 The structure of the turbulent wake and the random wave field generated by a moving sphere in a stratified fluid. Dyn. Atmos. Oceans 23, 299308.CrossRefGoogle Scholar
Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J. M. 2007 Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343368.Google Scholar
Browand, F. K., Guyomar, D. & Yoon, S. C. 1987 The behavior of a turbulent front in a stratified fluid: experiments with an oscillating grid. J. Geophys. Res. 92, 53295341.Google Scholar
Chomaz, J.-M., Bonetton, P. & Hopfinger, E. J. 1993 The structure of the near wake of a sphere moving horizontally in a stratified fluid. J. Fluid Mech. 254, 121.Google Scholar
Daviero, G. J., Roberts, P. J. W. & Maile, K. 2001 Refractive index matching in large-scale stratified experiments. Exp. Fluids 31 (2), 119126.Google Scholar
Deloncle, A., Billant, P. & Chomaz, J. M. 2008 Nonlinear evolution of the zigzag instability in stratified fluids: a shortcut on the route to dissipation. J. Fluid Mech. 599, 229239.Google Scholar
De Silva, I. P. D. & Fernando, H. J. S. 1992 Some aspects of mixing in a stratified turbulent patch. J. Fluid Mech. 240, 601625.Google Scholar
Diamessis, P. J., Domaradzki, J. A. & Hesthaven, J. S. 2005 A spectral multidomain penalty method model for the simulation of high Reynolds number localized incompressible stratified turbulence. J. Comput. Phys. 202, 298322.CrossRefGoogle Scholar
Diamessis, P. J., Spedding, G. R. & Domaradzki, J. A. 2011 Similarity scaling and vorticity structure in high-Reynolds-number stably stratified turbulent wakes. J. Fluid Mech. 671, 5295.Google Scholar
Dickey, T. D. & Mellor, G. L. 1980 Decaying turbulence in neutral and stratified fluids. J. Fluid Mech. 99, 331.Google Scholar
Dommermuth, D. G., Rottman, J. W., Innis, G. E. & Novikov, E. A. 2002 Numerical simulation of the wake of a towed sphere in a weakly stratified fluid. J. Fluid Mech. 473, 83101.CrossRefGoogle Scholar
Fernando, H. J. S. 1988 The growth of a turbulent patch in a stratified fluid. J. Fluid Mech. 190, 5577.Google Scholar
Fincham, A. M., Maxworthy, T. & Spedding, G. R. 1996 Energy dissipation and vortex structure in freely decaying, stratified grid turbulence. Dyn. Atmos. Oceans 23, 155169.CrossRefGoogle Scholar
Godoy-Diana, R., Chomaz, J.-M. & Billant, P. 2004 Vertical length scale selection for pancake vortices in strongly stratified viscous fluids. J. Fluid Mech. 504, 229238.Google Scholar
Gourlay, M. J., Arendt, S. C., Fritts, D. C. & Werne, J. 2001 Numerical modeling of initially turbulent wakes with net momentum. Phys. Fluids 13, 37833802.Google Scholar
Hanazaki, H. 1988 A numerical study of three-dimensional stratified flow past a sphere. J. Fluid Mech. 192, 393419.Google Scholar
Hebert, D. A. & de Bruyn Kops, S. M. 2006a Predicting turbulence in flows with strong stable stratification. Phys. Fluids 18 (6), 066602.Google Scholar
Hebert, D. A. & de Bruyn Kops, S. M. 2006b Relationship between vertical shear rate and kinetic energy dissipation rate in stably stratified flows. Geophys. Res. Lett. 33, L06602.CrossRefGoogle Scholar
Hopfinger, E. J. 1987 Turbulence in stratified fluids – a review. J. Geophys. Res. 92 (C5), 52875303.Google Scholar
Itsweire, E. C., Helland, K. N. & van Atta, C. W. 1986 The evolution of grid-generated turbulence in a stably stratified fluid. J. Fluid Mech. 162, 299338.Google Scholar
Lighthill, M. J. 1996 Internal waves and related initial-value problems. Dyn. Atmos. Oceans 23, 317.CrossRefGoogle Scholar
Lilly, D. K. 1983 Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci. 40, 749761.Google Scholar
Lin, Q., Boyer, D. L. & Fernando, H. J. S. 1992 Turbulent wakes of linearly stratified flow past a sphere. Phys. Fluids 4 (8), 16871696.Google Scholar
Lin, J. T. & Pao, Y. H. 1979 Wakes in stratified fluids. Annu. Rev. Fluid Mech. 11, 317338.Google Scholar
Lin, J. T. & Veenhuizen, S.1975 Measurements of the decay of grid-generated turbulence in a stratified fluid. Tech. Rep. 85. Flow Research Notes.Google Scholar
Lindborg, E. 2006 The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207242.Google Scholar
Liu, Y. N., Maxworthy, T. & Spedding, G. R. 1987 Collapse of a turbulent front in a stratified fluid 1. Nominally two-dimensional evolution in a narrow tank. J. Geophys. Res. 92, 54275433.Google Scholar
Métais, O. & Herring, J. R. 1989 Numerical simulations of freely evolving turbulence in stably stratified fluids. J. Fluid Mech. 202, 117148.Google Scholar
Meunier, P., Diamessis, P. J. & Spedding, G. R. 2006 Self-preservation in stratified momentum wakes. Phys. Fluids 18, 106601.CrossRefGoogle Scholar
Meunier, P. & Spedding, G. R. 2004 A loss of memory in stratified momentum wakes. Phys. Fluids 16, 298303.Google Scholar
Meunier, P. & Spedding, G. R. 2006 Stratified propelled wakes. J. Fluid Mech. 552, 229256.Google Scholar
Pal, A., de Stadler, M. & Sarkar, S. 2013 The spatial evolution of fluctuations in a self-propelled wake compared to a patch of turbulence. Phys. Fluids 25, 095106.Google Scholar
Perry, R. H., Green, D. W. & Maloney, J. O. 1997 Perry’s Chemical Engineers’ Handbook, 7th edn. McGraw-Hill.Google Scholar
Praud, O., Fincham, A. M. & Sommeria, J. 2005 Decaying grid turbulence in a strongly stratified fluid. J. Fluid Mech. 522, 133.Google Scholar
Riley, J. J. & de Bruyn Kops, S. M. 2003 Dynamics of turbulence strongly influenced by buoyancy. Phys. Fluids 15, 20472059.CrossRefGoogle Scholar
Riley, J. J. & Lindborg, E. 2008 Stratified turbulence: a possible interpretation of some geophysical turbulence measurements. J. Atmos. Sci. 65 (7), 24162424.Google Scholar
Riley, J. J., Metcalf, R. W. & Weissman, M. A. 1981 Direct numerical simulations of turbulence in homogeneously stratified fluids. In Non-linear Properties of Internal Waves, pp. 79112. American Institute of Physics.Google Scholar
Spedding, G. R. 1997 The evolution of initially turbulent bluff-body wakes at high internal Froude number. J. Fluid Mech. 337, 283301.Google Scholar
Spedding, G. R. 2002 Vertical structure in stratified wakes with high initial Froude number. J. Fluid Mech. 454, 71112.Google Scholar
Spedding, G. R. 2014 Wake signature detection. Annu. Rev. Fluid Mech. 46, 273302.Google Scholar
Spedding, G. R., Browand, F. K. & Fincham, A. M. 1996a The long-time evolution of the initially turbulent wake of a sphere in a stable stratification. Dyn. Atmos. Oceans 23, 171182.Google Scholar
Spedding, G. R., Browand, F. K. & Fincham, A. M. 1996b Turbulence, similarity scaling and vortex geometry in the wake of a towed sphere in a stably stratified fluid. J. Fluid Mech. 314, 53103.Google Scholar
Stillinger, D. C., Helland, K. N. & van Atta, C. W. 1983 Experiments on the transition of homogeneous turbulence to internal waves in a stratified fluid. J. Fluid Mech. 131, 91122.Google Scholar
Voropayev, S. I. & Afanasyev, Y. D. 1994 Vortex Structures in a Stratified Fluid. Chapman & Hall.CrossRefGoogle Scholar
Waite, M. L. 2011 Stratified turbulence at the buoyancy scale. Phys. Fluids 23, 066602.Google Scholar
Waite, M. L. 2013 Potential enstrophy in stratified turbulence. J. Fluid Mech. 722, R4.Google Scholar
Waite, M. L. & Bartello, P. 2004 Stratified turbulence dominated by vortical motion. J. Fluid Mech. 517, 281308.Google Scholar
Waite, M. L. & Bartello, P. 2006 Stratified turbulence generated by internal gravity waves. J. Fluid Mech. 546, 313339.Google Scholar
Weast, R. C. & Lide, D. R. 1989 Handbook of Chemistry and Physics, 70th edn. CRC Press.Google Scholar
Xu, Y., Fernando, H. J. S. & Boyer, D. L. 1995 Turbulent wakes of stratified flow past a cylinder. Phys. Fluids 7, 22432255.Google Scholar
Yap, C. & van Atta, C. W. 1993 Experimental studies of the development of quasi-two-dimensional turbulence in a stably stratified fluid. Dyn. Atmos. Oceans 19, 289323.Google Scholar