Published online by Cambridge University Press: 10 November 2016
The heating of particles in a dilute suspension, for instance by radiation, chemical reactions or radioactivity, leads to local temperature fluctuations in the fluid due to the non-uniformity of the disperse phase. In the presence of a gravity field, the fluid is set in motion by the resulting buoyancy forces. When the particle density is different than that of the fluid, the fluid motion alters the spatial distribution of the particles and possibly strengthens their concentration inhomogeneities. This in turn causes more intense local heating. Direct numerical simulations in the Boussinesq limit show this feedback loop. Various regimes are identified depending on the particle inertia. For very small particle inertia, the macroscopic behaviour of the system is the result of many thermal plumes that are generated independently of each other. For significant particle inertia, clusters of particles are observed and their dynamics controls the flow. The emergence of very intermittent turbulent fluctuations shows that the flow is influenced by the larger structures (turbulent convection) as well as by the small-scale dynamics that affect particle segregation and thus the flow forcing. Assuming thermal equilibrium between the particles and the fluid (i.e. infinitely fast thermal relaxation of the particle), we investigate the evolution of statistical observables with the change of the main control parameters (namely the particle number density, the particle inertia and the domain size), and propose a scaling argument for these trends. Concerning the energy density in the spectral space, it is observed that the turbulent energy and temperature spectra follow a power law, the exponent of which varies continuously with the Stokes number. Furthermore, the study of the spectra of the temperature and momentum forcing (and thus of the concentration/temperature and velocity/temperature correlations) gives strong support to the proposed feedback loop mechanism. We then discuss the intermittency of the flow, and analyse the effect of relaxing some of the simplifying assumptions, thus assessing the relevance of the original studied configuration.