Published online by Cambridge University Press: 21 May 2009
Laser Doppler Velocimetry (LDV) measurements are presented for a nominally two-dimensional constant-density flow over a surface-mounted triangular cylinder. The thickness of the boundary layer approaching the triangular cylinder is much less than the height of the triangle. Momentum and turbulent kinetic energy balances are presented and comparisons are made with other separated and reattaching flows. Also, time domain information is presented in the form of autocorrelations and spectra. From the energy balances, the importance of the pressure transport term at the high-speed edge of the shear layer is seen. Observations of the relationships between the shapes of the spectra and the details of the energy balance are made. For example, the slope of the velocity spectra varies from the free-stream value of −5/3 to a value of −1 in the middle of the recirculation region. Concurrent with this increase in slope is a decrease in the role of shear production in the turbulent kinetic energy balance and an increase in the role of advection and turbulent transport. From the two-component LDV measurements, a very low-frequency unsteadiness is shown to contribute energy preferentially to different components of the velocity fluctuations depending on the location in the flow.