Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T13:59:39.794Z Has data issue: false hasContentIssue false

Turbulent flame–wall interaction: a direct numerical simulation study

Published online by Cambridge University Press:  19 August 2010

A. GRUBER*
Affiliation:
SINTEF Energy Research, 7465 Trondheim, Norway
R. SANKARAN
Affiliation:
National Center for Computational Science, Oak Ridge National Laboratory, TN 37831, USA
E. R. HAWKES
Affiliation:
School of Photovoltaic and Renewable Energy Engineering/School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney NSW 2052, Australia
J. H. CHEN
Affiliation:
Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94550, USA
*
Email address for correspondence: [email protected]

Abstract

A turbulent flame–wall interaction (FWI) configuration is studied using three-dimensional direct numerical simulation (DNS) and detailed chemical kinetics. The simulations are used to investigate the effects of the wall turbulent boundary layer (i) on the structure of a hydrogen–air premixed flame, (ii) on its near-wall propagation characteristics and (iii) on the spatial and temporal patterns of the convective wall heat flux. Results show that the local flame thickness and propagation speed vary between the core flow and the boundary layer, resulting in a regime change from flamelet near the channel centreline to a thickened flame at the wall. This finding has strong implications for the modelling of turbulent combustion using Reynolds-averaged Navier–Stokes or large-eddy simulation techniques. Moreover, the DNS results suggest that the near-wall coherent turbulent structures play an important role on the convective wall heat transfer by pushing the hot reactive zone towards the cold solid surface. At the wall, exothermic radical recombination reactions become important, and are responsible for approximately 70% of the overall heat release rate at the wall. Spectral analysis of the convective wall heat flux provides an unambiguous picture of its spatial and temporal patterns, previously unobserved, that is directly related to the spatial and temporal characteristic scalings of the coherent near-wall turbulent structures.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abe, H., Kawamura, H. & Matsuo, Y. 2004 Surface heat-flux fluctuations in a turbulent channel flow up to re τ = 1020 with pr = 0.025 and 0.71. J. Heat Fluid Flow 25, 404419.CrossRefGoogle Scholar
Alshaalan, T. M. & Rutland, C. J. 1998 Turbulence, scalar transport, and reaction rates in flame-wall interaction. In Proceedings 27th International Symposium on Combustion (ed. Burgess, Anthony R. & Dryer, Frederick L.), pp. 793799. The Combustion Institute.Google Scholar
Alshaalan, T. M. & Rutland, C. J. 2002 Wall heat flux in turbulent premixed reacting flow. Combust. Sci. Technol. 174, 135165.CrossRefGoogle Scholar
Bellenoue, M., Kageyama, T., Labuda, S. A. & Sotton, J. 2004 Direct measurements of laminar flame quenching distance in a closed vessel. Exp. Therm. Fluid Sci. 27, 323331.CrossRefGoogle Scholar
Borghi, R. 1988 Turbulent combustion modelling. Prog. Energy Combust. Sci. 14, 245292.CrossRefGoogle Scholar
Bruneaux, G., Akselvoll, K., Poinsot, T. & Ferziger, J. H. 1996 Flame-wall interaction simulation in a turbulent channel flow. Combust. Flame 107, 2744.CrossRefGoogle Scholar
Cant, R. S., Pope, S. B. & Bray, K. N. C. 1990 Modelling the flame surface to volume ratio in turbulent premixed combustion. In Proceedings 23rd International Symposium on Combustion (ed. McLean, William J. & Barr, Pamela K.), pp. 809815. The Combustion Institute.Google Scholar
Chakraborty, N., Klein, M. & Cant, R. S. 2006 Stretch rate effects on displacement speed in turbulent premixed flame kernels in the thin reaction zones regime. In Proceedings 31st International Symposium on Combustion (ed. Barlow, Robert S., Sick, Volker, Glarborg, Peter & Yetter, Richard A.), pp. 13851392. The Combustion Institute.Google Scholar
Chen, J. H., Choudhary, A., deSupinski, B. Supinski, B., DeVries, M., Hawkes, E. R., Klasky, S., Liao, W. K., Ma, K. L., Mellor-Crummey, J., Podhorszki, N., Sankaran, R., Shende, S. & Yoo, C. S. 2009 Terascale direct numerical simulations of turbulent combustion using s3d. Comput. Sci. Discovery 2, 015001.CrossRefGoogle Scholar
Dabireau, F., Cuenot, B., Vermorel, O. & Poinsot, T. 2003 Interaction of flames of H2+O2 with inert walls. Combust. Flame 135, 123133.CrossRefGoogle Scholar
Domingo, P., Vervisch, L., Payet, S. & Hauguel, R. 2005 DNS of a premixed turbulent v-flame and LES of a ducted flame using a fsd-pdf subgrid scale closure with fpi-tabulated chemistry. Combust. Flame 143, 566586.CrossRefGoogle Scholar
Echekki, T. & Chen, J. H. 1999 Analysis of the contribution of curvature to premixed flame propagation. Combust. Flame 118, 308311.CrossRefGoogle Scholar
Echekki, T. & Chen, J. H. 2003 Direct numerical simulation of autoignition in non-homogeneous hydrogen–air mixtures. Combust. Flame 134, 169191.CrossRefGoogle Scholar
Enomoto, M. 2002 Sidewall quenching of laminar premixed flames propagating along the single wall surface. In Proceedings 29th International Symposium on Combustion (ed. Chen, Jacqueline H. & Colket, Meredith D.), pp. 781787. The Combustion Institute.Google Scholar
Ezekoye, O., Greif, R. & Sawyer, R. F. 1992 Increased surface temperature effects on wall heat transfer during unsteady flame quenching. In Proceedings 24th International Symposium on Combustion (ed. Law, Chung K.), pp. 14651472. The Combustion Institute.Google Scholar
Fernandez-Pello, A. C. 2002 Micropower generation using combustion: Issues and approaches. In Proceedings 29th International Symposium on Combustion (ed. Chen, Jacqueline H. & Colket, Meredith D.), pp. 883899. The Combustion Institute.Google Scholar
Fritz, J., Kröner, M. & Sattelmayer, T. 2004 Flashback in a swirl burner with cylindrical premixing zone. ASME J. Engng. Gas Turbines Power 126, 276283.CrossRefGoogle Scholar
Gibson, C. H. 1968 Fine structure of scalar fields mixed by turbulence. Part I. Zero-gradient points and minimal gradient surfaces. Phys. Fluids 11, 23052315.CrossRefGoogle Scholar
Gruber, A. 2006 Direct numerical simulation of turbulent combustion near solid surfaces. PhD thesis, Energy Processes Department, Norwegian University of Science and Technology, Trondheim, Norway.Google Scholar
Hawkes, E. R. 2000 Large eddy simulation of premixed turbulent combustion. PhD thesis, Engineering Department, University of Cambridge, Cambridge, UK.Google Scholar
Hawkes, E. R. & Cant, R. S. 2001 Physical and numerical realizability requirements for flame surface density approaches to large eddy and Reynolds averaged simulation of premixed turbulent combustion. Combust. Theory Modelling 5, 699720.CrossRefGoogle Scholar
Hawkes, E. R. & Chen, J. H. 2004 Evaluation of models for flame stretch due to curvature in the thin reaction zones regime. In Proceedings 30th International Symposium on Combustion (ed. Chen, Jacqueline H., ColketMeredith, D. Meredith, D., Barlow, Robert S. & Yetter, Richard A.), pp. 647656. The Combustion Institute.Google Scholar
Hawkes, E. R. & Chen, J. H. 2005 Comparison of direct numerical simulation of lean premixed methane-air flames with strained laminar flame calculations. Combust. Flame 144, 112125.CrossRefGoogle Scholar
Hawkes, E. R., Sankaran, R., Sutherland, J. C. & Chen, J. H. 2006 Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal CO/H2 kinetics. In Proceedings 31st International Symposium on Combustion (ed. Barlow, Robert S., Sick, Volker, Glarborg, Peter & Yetter, Richard A.), pp. 16331640. The Combustion Institute.Google Scholar
Hocks, W., Peters, N. & Adomeit, G. 1981 Flame quenching in front of a cold wall under two-step kinetics. Combust. Flame 41, 157170.CrossRefGoogle Scholar
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, stream and convergence zones in turbulent flows. Tech. Rep. CTR-S88. Center for Turbulence Research, Stanford University, Stanford, CA.Google Scholar
Hutchins, N. & Marusic, I. 2007 a Evidence of very long meandering structures in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 b Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. A 365, 647664.CrossRefGoogle ScholarPubMed
Jiménez, J. 1998 The largest scales of turbulent wall flows. In Annual Research Briefs of the Center for Turbulence Research (ed. Moin, Parviz), pp. 137154. Stanford University, Stanford, CA.Google Scholar
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near wall turbulence. J. Fluid Mech. 225, 213240.CrossRefGoogle Scholar
Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E., Miller, J. A. & Moffat, H. K. 1999 A fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Tech. Rep. Release 3.5. Reaction Design Inc., San Diego, CA.Google Scholar
Kennedy, C. A. & Carpenter, M. H. 1994 Several new numerical methods for compressible shear-layer simulations. Appl. Numer. Math. 14 (0), 397433.CrossRefGoogle Scholar
Kennedy, C. A., Carpenter, M. H. & Lewis, R. M. 2000 Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Math. 35 (0), 177219.CrossRefGoogle Scholar
Kim, J. 1983 On the structure of wall-bounded turbulent flows. Phys. Fluids 26, 20882097.CrossRefGoogle Scholar
Kim, J. & Hussain, F. 1994 Propagation velocity of perturbations in turbulent channel flow. Phys. Fluids 5, 695706.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Li, J., Zhao, Z., Kazarov, A. & Dryer, F. L. 2004 An updated comprehensive kinetic model of hydrogen combustion. Intl J. Chem. Kinetics 36, 566575.CrossRefGoogle Scholar
Lignell, D. O., Chen, J. H., Smith, P. J., Lu, T. & Law, C. K. 2007 The effect of flame structure on soot formation and transport in turbulent nonpremixed flames using direct numerical simulation. Combust. Flame 151, 228.CrossRefGoogle Scholar
Moser, R., Kim, J. & Mansour, N. 1999 Direct numerical simulation of turbulent channel flow up to Re τ = 590. Phys. Fluids 11 (4), 943945.CrossRefGoogle Scholar
Ng, T. T., Cheng, R. K., Robben, F. & Talbot, L. 1982 Combustion-turbulence interaction in the turbulent boundary layer over a hot surface. In Proceedings 19th International Symposium on Combustion (ed. Howard, Jack B.), pp. 359366. The Combustion Institute.Google Scholar
Orlandi, P. & Jiménez, J. 1994 On the generation of turbulent wall friction. Phys. Fluids 6, 634641.Google Scholar
Peters, N. 1997 The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384, 107132.CrossRefGoogle Scholar
Pitsch, H. 2006 Large eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453482.CrossRefGoogle Scholar
Poinsot, T., Echekki, T. & Mungal, M. G. 1992 A study of the laminar flame tip and implications for premixed turbulent combustion. Combust. Sci. Technol. 81, 4573.CrossRefGoogle Scholar
Poinsot, T., Haworth, D. C. & Bruneaux, G. 1993 Direct simulation and modelling of flame-wall interaction for premixed turbulent combustion. Combust. Flame 95, 118132.CrossRefGoogle Scholar
Poinsot, T. & Lele, S. K. 1992 Boundary conditions for direct simulations of compressible viscous flow. J. Comput. Phys. 101, 104129.CrossRefGoogle Scholar
Pope, S. B. 1988 The evolution of surfaces in turbulence. Intl J. Engng Sci. 26, 445469.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows, 2nd edition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Popp, P. & Baum, M. 1997 Analysis of wall heat fluxes, reaction mechanisms, and unburnt hydrocarbons during the head-on quenching of a laminar methane flame. Combust. Flame 108, 327348.CrossRefGoogle Scholar
Popp, P., Smooke, M. & Baum, M. 1996 Heterogeneous/homogeneous reaction and transport coupling during flame-wall interaction. In Proceedings 26th International Symposium on Combustion, pp. 26932700. The Combustion Institute.Google Scholar
Robinson, S. K. 1991 Kinematics of turbulent boundary layer structure. Tech. Rep. TM-103859. Moffet Field, NASA.Google Scholar
Runstadler, P. W., Kline, S. J. & Reynolds, W. C. 1963 An investigation of the flow structure of the turbulent boundary layer. Tech. Rep. 8. Department of Mechanical Engineering, Stanford University, Stanford University, Stanford, CA.Google Scholar
Sankaran, R., Hawkes, E. R., Chen, J. H., Lu, T. & Law, C. K. 2006 Structure of a spatially developing turbulent lean methane–air bunsen flame. In Proceedings 31st International Symposium on Combustion(ed. Barlow, Robert S., Sick, Volker, Glarborg, Peter & Yetter, Richard A.), pp. 12911298. The Combustion Institute.Google Scholar
Sankaran, R., Im, H. G., Hawkes, E. R. & Chen, J. H. 2004 The effects of non-uniform temperature distribution on the ignition of a lean homogeneous hydrogen–air mixture. In Proceedings 30th International Symposium on Combustion (ed. Chen, Jacqueline H., Colket, Meredith D., Barlow, Robert S. & Yetter, Richard A.), pp. 875882. The Combustion Institute.Google Scholar
Sutherland, J. C. & Kennedy, C. A. 2003 Improved boundary conditions for viscous, reactive, compressible flows. J. Comput. Phys. 191, 502524.Google Scholar
Veynante, D. & Vervisch, L. 2002 Turbulent combustion modelling. Prog. Energy Combust. Sci. 28, 193266.Google Scholar
Westbrook, C. K., Adamczyk, A. A. & Lavoie, G. A. 1981 A numerical study of laminar flame wall quenching. Combust. Flame 40, 8199.CrossRefGoogle Scholar