Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-19T17:56:48.188Z Has data issue: false hasContentIssue false

Turbulent dynamics of pipe flow captured in a reduced model: puff relaminarization and localized ‘edge’ states

Published online by Cambridge University Press:  25 January 2009

ASHLEY P. WILLIS*
Affiliation:
School of Mathematics, University of Bristol, BS8 1TW Bristol, UK
RICH R. KERSWELL
Affiliation:
School of Mathematics, University of Bristol, BS8 1TW Bristol, UK
*
Email address for correspondence: [email protected]

Abstract

Fully three-dimensional computations of flow through a long pipe demand a huge number of degrees of freedom, making it very expensive to explore parameter space and difficult to isolate the structure of the underlying dynamics. We therefore introduce a ‘2+ε-dimensional’ model of pipe flow, which is a minimal three-dimensionalization of the axisymmetric case: only sinusoidal variation in azimuth plus azimuthal shifts are retained; yet the same dynamics familiar from experiments are found. In particular the model retains the subcritical dynamics of fully resolved pipe flow, capturing realistic localized ‘puff-like’ structures which can decay abruptly after long times, as well as global ‘slug’ turbulence. Relaminarization statistics of puffs reproduce the memoryless feature of pipe flow and indicate the existence of a Reynolds number about which lifetimes diverge rapidly, provided that the pipe is sufficiently long. Exponential divergence of the lifetime is prevalent in shorter periodic domains. In a short pipe, exact travelling-wave solutions are found near flow trajectories on the boundary between laminar and turbulent flow. In a long pipe, the attracting state on the laminar–turbulent boundary is a localized structure which resembles a smoothened puff. This ‘edge’ state remains localized even for Reynolds numbers at which the turbulent state is global.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barkley, D. & Tuckerman, L. S. 2007 Mean flow of turbulent–laminar patterns in plane couette flow. J. Fluid Mech. 576, 109137.CrossRefGoogle Scholar
Barnes, D. R. & Kerswell, R. R. 2000 New results in rotating Hagen–Poiseuille flow. J. Fluid Mech. 417, 103126.CrossRefGoogle Scholar
Bottin, S. & Chate, H. 1998 Statistical analysis of the transition to turbulence in plane Couette flow. Eur. Phys. J. B 6, 143155.CrossRefGoogle Scholar
Darbyshire, A. G. & Mullin, T. 1995 Transition to turbulence in constant-flux pipe flow. J. Fluid Mech. 289, 83114.CrossRefGoogle Scholar
Duggleby, A., Ball, K. S., Kenneth, S., Paul, M. R. & Fischer, F. P. 2007 Dynamical eigenfunction decomposition of turbulent pipe flow. J. Turbul. 8, 124.CrossRefGoogle Scholar
Duguet, Y., Willis, A. P. & Kerswell, R. R. 2008 Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 225274.CrossRefGoogle Scholar
Eggels, J. G. M., Unger, F., Weiss, M. H., Westerweel, J., Adrian, R. J., Friedrich, R. & Nieuwstadt, F. T. M. 1994 Fully developed turbulent pipe flow: a comparison between DNS and experiment. J. Fluid Mech. 268, 175209.CrossRefGoogle Scholar
Faisst, H. & Eckhardt, B. 2003 Travelling waves in pipe flow. Phys. Rev. Lett. 91, 224502.CrossRefGoogle ScholarPubMed
Faisst, H. & Eckhardt, B. 2004 Sensitive dependence on initial conditions in transition to turbulence. J. Fluid Mech. 504, 343352.CrossRefGoogle Scholar
Gilbrech, D. A. & Hale, J. C. 1965 Further results on the transition from laminar to turbulent flow. In Developments in Mechanics (ed. Ostrach, S. & Scanlan, R. H.), vol. 2, pp. 315. Pergamon.Google Scholar
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.CrossRefGoogle Scholar
Hof, B., van Doorne, C. W. H., Westerweel, J., Nieuwstadt, F. T. M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R. R. & Waleffe, F. 2004 Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305, 15941597.CrossRefGoogle ScholarPubMed
Hof, B., Juel, A. & Mullin, T. 2003 Scaling of the turbulence transition threshold in a pipe. Phys. Rev. Lett. 91, 244502.CrossRefGoogle Scholar
Hof, B., Westerweel, J., Schneider, T. & Eckhardt, B. 2006 Finite lifetime of turbulence in shear flows. Nature 443, 59.CrossRefGoogle ScholarPubMed
Itano, T. & Toh, S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc. Jpn. 70, 703716.CrossRefGoogle Scholar
Jiménez, J. & Moin, P. 1991 The mimimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.CrossRefGoogle Scholar
Kerswell, R. R. 2005 Recent progress in understanding the transition to turbulence. Nonlinearity 18, R17R44.CrossRefGoogle Scholar
Kerswell, R. R. & Tutty, O. R. 2007 Recurrence of travelling waves in transitional pipe flow. J. Fluid Mech. 584, 69102.CrossRefGoogle Scholar
Lagha, M. & Manneville, P. 2007 Modelling transitional plane Couette flow. Eur. Phys. J. 58, 433447.CrossRefGoogle Scholar
Landman, M. J. 1990 a On the generation of helical waves in circular pipe flow. Phys. Fluids A 2, 738747.CrossRefGoogle Scholar
Landman, M. J. 1990 b Time-dependent helical waves in pipe flow. J. Fluid Mech. 221, 289310.CrossRefGoogle Scholar
Mackrodt, P. A. 1976 Stability of Hagen–Poiseuille flow with superimposed rigid rotation. J. Fluid Mech. 73, 153164.CrossRefGoogle Scholar
Marqués, F. 1990 On boundary conditions for velocity potentials in confined flows: application to Couette flow. Phys. Fluids A 2, 729737.CrossRefGoogle Scholar
Mellibovsky, F. & Meseguer, A. 2006 The role of streamwise perturbations in pipe flow transition. Phys. Fluids 18, 074104.CrossRefGoogle Scholar
Mellibovsky, F. & Meseguer, A. 2007 Pipe flow dynamics on the critical threshold. In Proceedings of the 15th Intl Couette–Taylor Workshop. Le Havre, France.Google Scholar
Moehlis, J., Faisst, H. & Eckhardt, B. 2004 A low-dimensional model for turbulent shear flows. New J. Phys. 6, 56.CrossRefGoogle Scholar
Mullin, T. & Peixinho, J. 2006 Recent observations in the transition to turbulence in a pipe. In Proceedings of the IUTAM Symposium on Laminar–Turbulent Transition, Bangalore, India.CrossRefGoogle Scholar
Patera, A. T. & Orszag, S. A. 1981 Finite-amplitude stability of axisymmetric pipe flow. J. Fluid Mech. 112, 467474.CrossRefGoogle Scholar
Peixinho, J. & Mullin, T. 2006 Decay of turbulence in pipe flow. Phys. Rev. Lett. 96, 094501.CrossRefGoogle ScholarPubMed
Peixinho, J. & Mullin, T. 2007 Finite amplitude thresholds for transition in pipe flow. J. Fluid Mech. 582, 169178.CrossRefGoogle Scholar
Pfenniger, W. 1961 Transition in the inlet length of tubes at high reynolds numbers. In Boundary Layer and Flow Control (ed. Lachman, G. V.), pp. 970980. Pergamon.Google Scholar
Pringle, C. C. T., Duguet, Y. & Kerswell, R. R. in press Highly-symmetric traveling waves in pipe flow. Phil. Trans. R. Soc. Lond. arXiv:0804.4854.Google Scholar
Pringle, C. C. T. & Kerswell, R. R. 2007 Asymmetric, helical, and mirror-symmetric traveling waves in pipe flow. Phys. Rev. Lett. 99, 207450.CrossRefGoogle ScholarPubMed
Schneider, T. M., Eckhardt, B. & Vollmer, J. 2007 a Statistical analysis of coherent structures in transitional pipe flow. Phys. Rev. E 75, 066313.Google Scholar
Schneider, T. M., Eckhardt, B. & Yorke, J. A. 2007 b Turbulence transition and the edge of chaos in pipe flow. Phys. Rev. Lett. 99, 034502.CrossRefGoogle ScholarPubMed
Schneider, T. M., Gibson, J. F., Lagha, M., Lillo, F. De & Eckhardt, B. 2008 Laminar–turbulent boundary in plane Couette flow. Phys. Rev. E 78, 037301.Google ScholarPubMed
Toh, S. & Itano, T. 2003 A periodic-like solution in channel flow. J. Fluid Mech. 481, 6776.CrossRefGoogle Scholar
Toplosky, N. & Akylas, T. R. 1988 Nonlinear spiral waves in rotating pipe flow. J. Fluid Mech. 190, 3954.CrossRefGoogle Scholar
Viswanath, D. 2007 The dynamics of transition to turbulence in plane couette flow. arXiv: physics/0701337.Google Scholar
Wang, J., Waleffe, F. & Gibson, F. 2007 Lower branch coherent states in shear flows. Phys. Rev. Lett. 98, 204501.CrossRefGoogle ScholarPubMed
Wedin, H. & Kerswell, R. R. 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333371.CrossRefGoogle Scholar
Willis, A. P. & Kerswell, R. R. 2007 a Critical behaviour in the relaminarisation of localised turbulence in pipe flow. Phys. Rev. Lett. 98, 014501.CrossRefGoogle Scholar
Willis, A. P. & Kerswell, R. R. 2007 b Reply to comment on ‘critical behaviour in the relaminarisation of localised turbulence in pipe flow’. arXiv:0707.2684.CrossRefGoogle Scholar
Willis, A. P. & Kerswell, R. R. 2008 Coherent structures in local and global pipe turbulence. Phys. Rev. Lett. 100, 124501.CrossRefGoogle ScholarPubMed
Wygnanski, I. J. & Champagne, F. H. 1973 On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59, 281351.CrossRefGoogle Scholar