Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T22:36:48.324Z Has data issue: false hasContentIssue false

Turbulent drag reduction using fluid spheres

Published online by Cambridge University Press:  25 January 2013

J. J. J. Gillissen*
Affiliation:
Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
*
Email address for correspondence: [email protected]

Abstract

Using direct numerical simulations of turbulent Couette flow, we predict drag reduction in suspensions of neutrally buoyant fluid spheres, of diameter larger than the Kolmogorov length scale. The velocity fluctuations are enhanced in the streamwise direction, and reduced in the cross-stream directions, which is similar to the more studied case of drag reduction using polymers. Despite these similarities, the drag reduction mechanism is found to originate in the logarithmic region, while the buffer region contributes to a slight drag increase, which is opposite to polymer-induced drag reduction. Another striking difference is the reduction of the turbulent energy at the large scales and an enhancement at the small scales.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benzi, R., Ching, E. S. C., De Angelis, E. & Procaccia, I. 2008 Comparison of theory and direct numerical simulations of drag reduction by rodlike polymers in turbulent channel flows. Phys. Rev. E 77, 046309.Google Scholar
Benzi, R., Ching, E. S. C., Lo, T. S., L’vov, V. S. & Procaccia, I. 2005 Additive equivalence in turbulent drag reduction by flexible and rodlike polymers. Phys. Rev. E 72 (1), 016305.Google Scholar
Chen, M., Kontomaris, K. & McLaughlin, J. B. 1998 Direct numerical simulation of droplet collisions in a turbulent channel flow. Part I. Collision algorithm. Intl J. Multiphase Flow 24, 10791103.Google Scholar
De Angelis, E., Casciola, C. M., L’vov, V. S., Pomyalov, A., Procaccia, I. & Tiberkevich, V. 2004 Drag reduction by a linear viscosity profile. Phys. Rev. E 70 (5), 055301.Google Scholar
Gillissen, J. J. J., Boersma, B. J., Mortensen, P. H. & Andersson, H. I. 2007 The stress generated by non-Brownian fibres in turbulent channel flow simulations. Phys. Fluids 19 (11), 115107.Google Scholar
Gillissen, J. J. J., Sundaresan, S. & Van Den Akker, H. E. A. 2011 A lattice Boltzmann study on the drag force in bubble swarms. J. Fluid Mech. 679, 101121.Google Scholar
Gust, G. 1976 Observations on turbulent-drag reduction in a dilute suspension of clay in sea-water. J. Fluid Mech. 75 (1), 2947.Google Scholar
Iaccarino, G., Shaqfeh, E. S. G. & Dubief, Y. 2010 Reynolds-averaged modelling of polymer drag reduction in turbulent flows. J. Non-Newtonian Fluid Mech. 165 (7–8), 376384.Google Scholar
Komminaho, J., Lundbladh, A. & Johansson, A. V. 1996 Very large structures in plane turbulent Couette flow. J. Fluid Mech. 320, 259285.Google Scholar
Lu, J., Fernández, A. & Tryggvason, G. 2005 The effect of bubbles on the wall drag in a turbulent channel flow. Phys. Fluids 17 (9), 095102.CrossRefGoogle Scholar
Lumley, J. L. 1973 Drag reduction in turbulent flow by polymer additives. J. Polym. Sci. Macromol. Rev. 7 (1), 263290.Google Scholar
Madavan, N. K., Deutsch, S. & Merkle, C. L. 1985 Measurements of local skin friction in a microbubble-modified turbulent boundary layer. J. Fluid Mech. 156, 237256.Google Scholar
McComb, W. D. & Chan, K. T. J. 1985 Laser–Doppler anemometer measurements of turbulent structure in drag-reducing fibre suspensions. J. Fluid Mech. 152, 455478.Google Scholar
Pasinato, H. D. 2011 Velocity and temperature dissimilarity in fully developed turbulent channel and plane Couette flows. Intl J. Heat Fluid Flow 32 (1), 1125.CrossRefGoogle Scholar
Rashidi, M., Hetsroni, G. & Banerjee, S. 1990 Particle-turbulence interaction in a boundary layer. Intl J. Multiphase Flow 16 (6), 935949.Google Scholar
Taylor, G. I. 1932 The viscosity of a fluid containing small drops of another fluid. Proc. R. Soc. Lond. A 138, 4148.Google Scholar
Uhlmann, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209 (2), 448476.Google Scholar
Virk, P. S. 1975 Drag reduction fundamentals. AIChE J. 21 (4), 625656.Google Scholar
Warholic, M. D., Massah, H. & Hanratty, T. J. 1999a Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing. Exp. Fluids 27, 461472.Google Scholar
Warholic, M. D., Scmhidt, G. M. & Hanratty, T. J. 1999b The influence of a drag-reducing surfactant on a turbulent velocity field. J. Fluid Mech. 388, 120.CrossRefGoogle Scholar
Wolf-Gladrow, D. A. 2000 Lattice-Gas Cellular Automata and Lattice Boltzmann Models. An Introduction. Springer.CrossRefGoogle Scholar
Xi, L. & Graham, M. D. 2010 Turbulent drag reduction and multistage transitions in viscoelastic minimal flow units. J. Fluid Mech. 647, 421452.Google Scholar
Xu, J., Maxey, M. R. & Karniadakis, G. E. 2002 Numerical simulation of turbulent drag reduction using micro-bubbles. J. Fluid Mech. 468, 271281.CrossRefGoogle Scholar
Zhao, L. H., Andersson, H. I. & Gillissen, J. J. J. 2010 Turbulence modulation and drag reduction by spherical particles. Phys. Fluids 22 (8), 081702.Google Scholar