Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-21T09:17:06.189Z Has data issue: false hasContentIssue false

Turbulence–flame interactions in lean premixed hydrogen: transition to the distributed burning regime

Published online by Cambridge University Press:  31 May 2011

A. J. ASPDEN*
Affiliation:
Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50A-1148, Berkeley, CA 94720, USA
M. S. DAY
Affiliation:
Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50A-1148, Berkeley, CA 94720, USA
J. B. BELL
Affiliation:
Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50A-1148, Berkeley, CA 94720, USA
*
Email address for correspondence: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The response of lean (ϕ ≤ 0.4) premixed hydrogen flames to maintained homogeneous isotropic turbulence is investigated using detailed numerical simulation in an idealised three-dimensional configuration over a range of Karlovitz numbers from 10 to 1562. In particular, a focus is placed on turbulence sufficiently intense that the flames can no longer be considered to be in the thin reaction burning regime. This transition to the so-called distributed burning regime is characterised through a number of diagnostics, and the relative roles of molecular and turbulent mixing processes are examined. The phenomenology and statistics of these flames are contrasted with a distributed thermonuclear flame from a related astrophysical study.

Type
Papers
Creative Commons
This is a work of the U.S. Government and is not subject to copyright protection in the United States.
Copyright
Copyright © Cambridge University Press 2011. This is a work of the U.S. Government and is not subject to copyright protection in the United States.

References

REFERENCES

Abraham, J., Williams, F. A. & Bracco, F. V. 1985 A discussion of turbulent flame structure in premixed charges. SAE 850345.CrossRefGoogle Scholar
Almgren, A. S., Bell, J. B. & Crutchfield, W. Y. 2000 Approximate projection methods: Part I. Inviscid analysis. SIAM J. Sci. Comput. 22, 11391159.CrossRefGoogle Scholar
Almgren, A. S., Bell, J. B. & Szymczak, W. G. 1996 A Numerical Method for the Incompressible Navier–Stokes Equations Based on an Approximate Projection. SIAM J. Sci. Comput. 17, 358369.CrossRefGoogle Scholar
Aspden, A. J., Bell, J. B., Day, M. S., Woosley, S. E. & Zingale, M. 2008 a Turbulence–Flame Interactions in Type Ia Supernovae. Astrophys. J. 689, 11731185.Google Scholar
Aspden, A. J., Bell, J. B. & Woosley, S. E. 2010 Distributed Flames in Type Ia Supernovae. Astrophys. J. 710, 16541663.CrossRefGoogle Scholar
Aspden, A. J., Nikiforakis, N., Dalziel, S. B. & Bell, J. B. 2008 b Analysis of Implicit LES methods. Commun. Appl. Math. Comput. Sci. 3 (1), 103126.Google Scholar
Baum, M., Poinsot, T. J., Haworth, D. C. & Darabiha, N. 1994 Direct numerical simulation of H2/O2/N2 flames with complex chemistry in two-dimensional turbulent flows. J. Fluid Mech. 281, 132.CrossRefGoogle Scholar
Bell, J. B., Brown, N. J., Day, M. S., Frenklach, M., Grcar, J. F. & Tonse, S. R. 2000 The dependence of chemistry on the inlet equivalence ratio in vortex–flame interactions. Proc. Combust. Inst. 28, 19331939.Google Scholar
Bell, J. B., Cheng, R. K., Day, M. S., Beckner, V. E. & Lijewski, M. J. 2008 Interaction of turbulence and chemistry in a low-swirl burner. J. Phys.: Conf. Ser. 125, 012027.Google Scholar
Bell, J. B., Cheng, R. K., Day, M. S. & Shepherd, I. G. 2007 a Numerical simulation of Lewis number effects on lean premixed turbulent flames. Proc. Combust. Inst. 31, 13091317.Google Scholar
Bell, J. B., Day, M. S. & Grcar, J. F. 2002 a Numerical simulation of premixed turbulent methane combustion. Proc. Combust. Inst. 29, 19871993.CrossRefGoogle Scholar
Bell, J. B., Day, M. S., Grcar, J. F., Bessler, W. G., Schultz, C., Glarborg, P. & Jensen, A. D. 2002 b Detailed modeling and laser-induced fluorescence imaging of nitric oxide in a NH3-seeded non-premixed methane/air flame. Proc. Combust. Inst. 29, 21952202.CrossRefGoogle Scholar
Bell, J. B., Day, M. S., Grcar, J. F., Lijewski, M. J., Driscoll, J. F. & Filatyev, S. F. 2007 b Numerical simulation of a laboratory-scale turbulent slot flame. Proc. Combust. Inst. 31, 12991307.CrossRefGoogle Scholar
Bell, J. B., Day, M. S., Shepherd, I. G., Johnson, M., Cheng, R. K., Grcar, J. F., Beckner, V. E. & Lijewski, M. J. 2005 Numerical simulation of a laboratory-scale turbulent V-flame. Proc. Natl Acad. Sci. USA 102 (29), 1000610011.CrossRefGoogle ScholarPubMed
Borghi, R. 1985 On the structure of turbulent premixed flames. In Recent Advances in Aeronautical Science (ed. Bruno, C. & Casci, C.). Pergamon.Google Scholar
Bowman, C. T., Hanson, R. K., Davidson, D. F., Gardiner, W. C. Jr, Lissianski, V., Smith, G. P., Golden, D. M., Frenklach, M. & Goldenberg, M. 1995 GRI-Mech: an optimized detailed chemical reaction mechanism for methane combustion. Available at: http://www.me.berkeley.edu/gri_mech/.Google Scholar
Bray, K. N. C. 1995 Turbulent Transport in Flames. R. Soc. Proc. Lon. A 451, 231256.Google Scholar
Bregeon, B., Gordon, A. S. & Williams, F. A. 1978 Near-limit downward propagation of hydrogen and methane flames in oxygen/nitrogen mixtures. Combust. Flame 33, 3345.CrossRefGoogle Scholar
Bremer, P.-T., Weber, G., Tierny, J., Pascucci, V., Day, M. & Bell, J. 2009 A topological framework for the interactive exploration of large scale turbulent combustion. In Proc. 5th IEEE Intl Conf. on e-Science, pp. 247–254.Google Scholar
Chen, Y.-C. & Mansour, M. S. 1997 Simultaneous Rayleigh scattering and laser-induced CH fluorescence for reaction zone imaging in high-speed premixed hydrocarbon flames. Appl. Phys. B 64 (5), 599605.Google Scholar
Chen, Y.-C., Peters, N., Schneemann, G. A., Wruck, N., Renz, U. & Mansour, M. S. 1996 The detailed flame structure of highly stretched turbulent premixed methane–air flames. Combust. Flame 107 (3), 223244.CrossRefGoogle Scholar
Damköhler, G. 1940 Der Einfluss der Turbulenz auf die Flammengeschwindigenkeit in Gasgemischen. Z. Elektrochem. 46, 601652.Google Scholar
Darbyshire, O. R., Swaminathan, N. & Hochgreb, S. 2010 The effects of small-scale mixing models on the prediction of turbulent premixed and stratified combustion. Combust. Sci. Technol. 182, 11411170.Google Scholar
Day, M. S. & Bell, J. B. 2000 Numerical simulation of laminar reacting flows with complex chemistry. Combust. Theor. Model. 4, 535556.CrossRefGoogle Scholar
Day, M. S., Bell, J. B., Bremer, P.-T., Pascucci, V., Beckner, V. & Lijewski, M. J. 2009 a Turbulence effects on cellular burning structures in lean premixed hydrogen flames. Combust. Flame 156 (5), 10351045.Google Scholar
Day, M. S., Bell, J. B., Cheng, R. K., Tachibana, S., Beckner, V. E. & Lijewski, M. J. 2009 b Cellular burning in lean premixed turbulent hydrogen-air flames: coupling experimental and computational analysis at the laboratory scale, J. Phys.: Conf. Ser. 180, 012031.Google Scholar
Dunn, M. J., Masri, A. R. & Bilger, R. B. 2007 A new piloted premixed jet burner to study strong finite-rate chemistry effects. Combust. Flame 151 (1–2), 4660.Google Scholar
Dunn, M. J., Masri, A. R., Bilger, R. W., Barlow, R. S. & Wang, G.-H. 2009 The compositional structure of highly turbulent piloted premixed flames issuing into a hot coflow. Proc. Combust. Inst. 32 (2), 17791786.CrossRefGoogle Scholar
Ern, A. & Giovangigli, V. 1994 Multicomponent Transport Algorithms. Lecture Notes in Physics, vol. m24. Springer.Google Scholar
Gollub, J. P., Clarke, J., Gharib, M., Lane, B. & Mesquita, O. N. 1991 Fluctuations and transport in a stirred fluid with a mean gradient. Phys. Rev. Lett. 67 (25), 35073510.CrossRefGoogle Scholar
Jayesh, & Warhaft, Z. 1991 Probability distribution of a passive scalar in grid-generated turbulence. Phys. Rev. Lett. 67 (25), 35033506.CrossRefGoogle ScholarPubMed
Kalghatgi, G. T., Cousins, J. M. & Bray, K. N. C. 1981 Crossed beam correlation measurements and model predictions in a rocket exhaust plume. Combust. Flame 43, 5167.CrossRefGoogle Scholar
Kee, R. J., Grcar, J. F., Smooke, M. D. & Miller, J. A. 1983 PREMIX: A Fortran program for modeling steady, laminar, one-dimensional premixed flames. Tech. Rep. SAND85-8240. Sandia National Laboratories, Livermore.Google Scholar
Klimov, A. M. 1963 Laminar flame in a turbulent flow. Zhur. Prikl. Mekh. Tekh. Fiz. 3, 4958.Google Scholar
Kolmogorov, A. 1941 The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers. Akad. Nauk SSSR Dokl. 30, 301305.Google Scholar
Littlejohn, D. & Cheng, R. K. 2007 Fuel effects on a low-swirl injector for lean premixed gas turbines. Proc. Combust. Inst. 31 (2), 31553162.CrossRefGoogle Scholar
Majda, A. & Sethian, J. A. 1985 The derivation and numerical solution of the equations for zero Mach number combustion. Combust. Sci. Technol. 42, 185205.CrossRefGoogle Scholar
Mansour, M. S., Chen, Y.-C. & Peters, N. 1992 The Reaction Zone Structure of Turbulent Premixed Methane–Helium–Air Flames near Extinction. In 24th Symp. (International) on Combustion, pp. 461–468.Google Scholar
Mansour, M. S., Peters, N. & Chen, Y.-C. 1998 Investigation of scalar mixing in the thin reaction zones regime using a simultaneous CH-LIF/Rayleigh laser technique. Proc. Combust. Inst. 27 (1), 767773.CrossRefGoogle Scholar
Mantel, T. & Borghi, R. 1994 A new model of premixed wrinkled flame propagation based on a scalar dissipation equation. Combust. Flame 96, 443457.CrossRefGoogle Scholar
Markstein, G. H. 1949 Cell structure of propane flames burning in tubes. J. Chem. Phys. 17 (4), 428429.CrossRefGoogle Scholar
Meneveau, C. & Poinsot, T. 1991 Stretching and quenching of flamelets in premixed turbulent combustion. Combust. Flame 86 (4), 311332.CrossRefGoogle Scholar
Mitani, T. & Williams, F. A. 1980 Studies of cellular flames in hydrogen–oxygen–nitrogen mixtures. Combust. Flame 39, 169190.Google Scholar
Pember, R. B., Bell, J. B., Colella, P., Crutchfield, W. Y. & Welcome, M. W. 1995 An adaptive Cartesian grid method for unsteady compressible flow in irregular regions. J. Comput. Phys. 120, 278304.Google Scholar
Peters, N. 1986 Laminar flamelet concepts in turbulent combustion. In 21st Symp. (International) on Combustion, pp. 1231–1250. Combustion Institute.CrossRefGoogle Scholar
Peters, N. 1999 The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384, 107132.CrossRefGoogle Scholar
Peters, N. 2000 Turbulent Combustion. Cambridge University Press.CrossRefGoogle Scholar
Poinsot, T. & Veynante, D. 2005 Theoretical and Numerical Combustion, 2nd edn. Edwards.Google Scholar
Poinsot, T., Veynante, D. & Candel, S. 1990 Diagrams of premixed turbulent combustion based on direct simulation. Proc. Combust. Inst. 23, 613619.CrossRefGoogle Scholar
Poinsot, T., Veynante, D. & Candel, S. 1991 Quenching processes and premixed turbulent combustion diagrams. J. Fluid Mech. 228, 561606.Google Scholar
Poludnenko, A. Y. & Oran, E. S. 2010 a The interaction of high-speed turbulence with flames: Global properties and internal flame structure. Combust. Flame 157, 9951011.CrossRefGoogle Scholar
Poludnenko, A. Y. & Oran, E. S. 2010 b The interaction of high-speed turbulence with flames: Turbulent flame speed. Combust. Flame 158, 301326.Google Scholar
Pope, S. B. 1987 Turbulent premixed flames. Annu. Rev. Fluid Mech. 19 (1), 237270.CrossRefGoogle Scholar
Pope, S. B. & Anand, M. S. 1985 Flamelet and distributed combustion in premixed turbulent flames. Proc. Combust. Inst. 20 (1), 403410.CrossRefGoogle Scholar
Rehm, R. G. & Baum, H. R. 1978 The equations of motion for thermally driven buoyant flows. J. Res. Natl Bur. Stand. 83, 297308.Google Scholar
Roberts, W. L., Driscoll, J. F., Drake, M. C. & Goss, L. P. 1993 Images of the quenching of a flame by a vortex – to quantify regimes of turbulent combustion. Combust. Flame 94 (1), 5869.CrossRefGoogle Scholar
Strakey, P., Sidwell, T. & Ontko, J. 2007 Investigation of the effects of hydrogen addition on lean extinction in a swirl stabilized combustor. Proc. Combust. Inst. 31, 31733180.Google Scholar
Sullivan, N., Jensen, A., Glarborg, P., Day, M. S., Grcar, J. F., Bell, J. B., Pope, C. & Kee, R. J. 2002 Ammonia conversion and NOx formation in laminar coflowing nonpremixed methane–air flames. Combust. Flame 131, 285298.Google Scholar
Summerfield, M., Reiter, S. H., Kebely, V. & Mascolo, R. W. 1954 The physical structure of turbulent flames. J. Jet Propul. 24 (4), 254255.Google Scholar
Summerfield, M., Reiter, S. H., Kebely, V. & Mascolo, R. W. 1955 The structure and propagation mechanism of turbulent flames in high speed flow. J. Jet Propul. 25 (8), 377384.Google Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.Google Scholar
Thoroddsen, S. T. & Van Atta, C. W. 1992 Exponential tails and skewness of density-gradient probability density functions in stably stratified turbulence. J. Fluid Mech. 244, 547566.CrossRefGoogle Scholar
Veynante, D., Trouvé, A., Bray, K. N. C. & Mantel, T. 1997 Gradient and counter-gradient scalar transport in turbulent premixed flames. J. Fluid Mech. 332, 263293.Google Scholar
Williams, F. A. 1976 Criteria for existence of wrinkled laminar flame structure of turbulent premixed flames. Combust. Flame 26, 269270.Google Scholar
Williams, F. A. 1985 a Combustion Theory. Addison-Wesley.Google Scholar
Williams, F. A. 1985 b Turbulent combustion. In Mathematics of Combustion (ed. Buckmaster, J.). SIAM.Google Scholar
Zeldovich, Y. B. 1944 Theory of Combustion and Detonation in Gases (in Russian). Acad. Sci. USSR.Google Scholar