Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T23:47:06.324Z Has data issue: false hasContentIssue false

Turbulence in the liquid phase of a uniform bubbly air–water flow

Published online by Cambridge University Press:  26 April 2006

M. Lance
Affiliation:
Laboratoire de Mécanique des Fluides et d'Acoustique, URA CNRS 263, Ecole Centrale de Lyon, 69131 Ecully Cedex, France
J. Bataille
Affiliation:
Laboratoire de Mécanique des Fluides et d'Acoustique, URA CNRS 263, Ecole Centrale de Lyon, 69131 Ecully Cedex, France

Abstract

The paper describes studies of the turbulence of the liquid in a bubbly, grid-generated turbulent flow field. Laser-Doppler and hot-film anemometry are used for the experimental investigation. It is found that the turbulent kinetic energy increases strongly with the void fraction α. Roughly speaking, there exist two distinct regimes: the first one corresponds to low value of α, where hydrodynamic interactions between bubbles are negligible, and the second one to higher values, for which, owing to their mutual interactions, the bubbles transfer a greater amount of kinetic energy to the liquid. The Reynolds stress tensor shows that the quasi-isotropy is not altered. At low enough values of α, the difference between the turbulent kinetic energy in the liquid phase and the energy associated with the grid-generated turbulence proves to be approximately equal to the intensity of the pseudo-turbulence, defined as the fluctuating energy that would be induced by the motion of the bubbles under non-turbulent conditions. The one-dimensional spectra exhibit a large range of high frequencies associated with the wakes of the bubbles and the classical $-\frac{5}{3}$ power law is progressively replaced by a $-\frac{8}{3}$ dependence.

Type
Research Article
Copyright
© 1991 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bataille, J. & Kestin, J., 1981 Continuum modeling of two-phase flows. NSF rep. GEOFLO 12.Google Scholar
Batchelor, G. K.: 1972 Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 52, 245268.Google Scholar
Bremhorst, K. & Gilmore, D. B., 1947 Response of a hot wire anemometer probe to a stream of air bubbles in a water flow. J. Phys. E: Sci. Instrum. 9, 347352.Google Scholar
Comte-Bellot, G. & Corrsin, S. 1966 The use of a contraction to improve the isotropy of a grid generated turbulence. J. Fluid Mech. 25, 657682.Google Scholar
Cook, T. L. & Harlow, F. H., 1984 Virtual mass in multiphase flow. Intl. J. Multiphase Flow 10, 691696.Google Scholar
Corrsin, S. & Kistler, A. L., 1953 Free-stream boundaries of turbulent flows. NACA Rep. 1244.Google Scholar
Delhaye, J. M.: 1969 Hot film anemometry in two-phase flow. ASME Symp. on Two-Phase Flow Instrumentation, llth Natl Heat Transfer Conf.Google Scholar
Delhaye, J. M. & Achard, J. L., 1976 On the averaging operators introduced in two-phase flow modeling. OEDC Rep., Specialist's Meeting on Transient Two-Phase Flow, Toronto.Google Scholar
Drew, D. E., Cheng, L. & Lahey, R. T., 1979 The analysis of virtual mass effects in two-phase flow. Intl J. Multiphase Flow 5, 233242.Google Scholar
Drew, D. A. & Lahey, R. T., 1977 Two-phase flow phenomena in nuclear reactor technology. Q. Rep. Rensselaer Polytechnic Institute.Google Scholar
Drew, D. A. & Lahey, R. T., 1982 Phase distribution mechanisms in turbulent low-quality two-phase flow in a circular pipe. J. Fluid Mech. 117, 91106.Google Scholar
Galaup, J. P.: 1975 Contribution à l'étude des méthodes de mesure en écoulement diphasique. Thèse de Docteur-Ingénieur, Grenoble.
Gherson, P. & Lykoudis, P. S., 1984 Local measurements in two-phase liquid-metal magneto-fluid-mechanic flow. J. Fluid Mech. 147, 81104.Google Scholar
Herringe, R. A. & Davis, M. R., 1976 Structural development of gas—liquid mixture flows. J. Fluid Mech. 73, 97123.Google Scholar
Ishii, M.: 1975 Thermo-Fluid Dynamics of Two-Phase Flows. Paris: Eyrolles.
Lamb, H.: 1932 Hydrodynamics. Cambridge University Press.
Lance, M.: 1979 Contribution à 1′étude de la turbulence dans la phase liquide des écoulements à bulles. Thèse de Docteur-Ingénieur, Université Claude Bernard, Lyon, France.
Lance, M.: 1986 Etude de la turbulence dans les écoulements diphasiques dispersés. Thèse de Doctorat d'Etat, Lyon.
Lance, M. & Bataille, J., 1983 Turbulence in the liquid phase of a bubbly air water flow. In Proc. NATO Specialist's Meeting On Transient Two-Phase Flows, Spitzingsee. Martinus Nijhoff.
Lance, M., Marie, J. L. & Bataille, J., 1985 Homogeneous turbulence in bubbly flows. In Fundamental Aspect of Gas-Liquid Flows, Winter Annual Meeting ASMS, Miami, November 1985.Google Scholar
Lance, M., Marié, J. L. & Bataille, J. 1990 Homogeneous turbulence in bubbly flows. Trans. ASME I: J. Fluids Engng (to appear).Google Scholar
Lance, M., Marie, J. L., Charnay, G. & Bataille, J., 1980 Turbulence structure of a co-current air water bubbly flow. Proc. ANS/ASME/NRC Intl Topic Meeting on Nuclear Reactor Thermal-hydraulics, 5–8 October, Saratoga Springs.Google Scholar
Lee, S. J.: 1982 The development of a digital data processing system for two-phase turbulence data. M. S. dissertation, Rensselaer Polytechnic Institute, Troy.
Marie, J. L.: 1980 Contribution au développement de 1′anémoméetrie laser Doppler en écoulements diphasiques dispersés. Thèse de Docteur-Ingénieur, Université Claude Bernard, Lyon.
Marie, J. L.: 1983 Investigation of two-phase bubbly flows using LDA. Physicochem. Hydrodyn. 4, 103118.Google Scholar
Marie, J. L., Charnay, G. & Bataille, J., 1982 Investigation of turbulence in two-phase dispersed flows using laser Doppler anemometry. Intl Symp. on Application of LDA to Fluid Mechanics, Lisbon, June.Google Scholar
Maxworthy, T.: 1967 A note on the existence of wakes behind large rising bubbles. J. Fluid Mech. 27, 367368.Google Scholar
Mercier, J., Lyrio, A. & Forshund, R., 1973 Three-dimensional study of the non rectilinear trajectory of air bubbly rising in water. Trans. ASME E: J. Appl. Mech. 40, 650654.Google Scholar
Moore, D. W.: 1963 The boundary layer on a spherical gas bubble. J. Fluid Mech. 16, 161176.Google Scholar
Ohba, A. K., Keishimoto, I. & Ogasawarar, M., 1977 Simultaneous measurement of local liquid velocity and void fraction in bubbly flows using a gas laser. Tech. Rep. of the Osaka University, vol. 27, no. 1358.Google Scholar
Resch, F.: 1974 Etude expérimentale de la turbulence dans les écoulements hydrauliques. Thèse de Doctorat d'Etat, Marseille.
Resch, F. & Abel, R., 1975 Spectral analysis using Fourier transform techniques. Intl J. Numer. Meth. Engng 9, 869902.Google Scholar
Saffman, P. G.: 1956 On the rise of small air bubbles in water. J. Fluid Mech. 1, 249275.Google Scholar
Sato, Y., Sadatomi, M. & Sekoguchi, K., 1981 Momentum and heat transfer in two-phase bubble flow. Intl J. Multiphase Flow 7, 167190.Google Scholar
Seato, Y. & Sekoguchi, K., 1975 Liquid velocity distribution in two-phase bubble flow. Intl J. Multiphase Flow 2, 79.Google Scholar
Schon, J. P. & Charnay, G., 1975 Conditional Sampling. Von Karman Institute, Lecture Series 73, Bruxelles.
Serizawa, A., Kataoka, I. & Mishigoshi, I., 1975 Turbulence structure of air-water bubbly flow. Intl J. Multiphase Flow 2, 221.Google Scholar
Sullivan, J. P., Houze, R. N., Buenger, D. E. & Theofanous, T. G., 1978 Turbulence in two-phase dispersed flows. OECD/CSNI Specialist's Meeting on Transient Two-Phase Flows, Paris, June.Google Scholar
Theofanous, T. G. & Sullivan, J. P., 1982 Turbulence in two-phase dispersed flows. J. Fluid Mech. 116, 343362.Google Scholar
Thomas, N. H., Auton, T. R., Sene, K. & Hunt, J. C. R. 1983 Entrapment and transport of bubbles by transient large eddies in turbulent shear flows. BHRA Intl Conf. on the Physical Modeling of Multiphase Flow, Coventry, 19–21 April.Google Scholar
Tsuji, Y. & Moriaka, Y., 1982 LDA measurements of an air-solid two-phase flow in a horizontal pipe. J. Fluid Mech. 120, 385409.Google Scholar
Tsuji, Y., Morikawa, Y. & Terashima, K., 1982 Fluid-dynamic interaction between two spheres. Intl J. Multiphase Flow 8, 7182.Google Scholar
Wang, S. K.: 1985 Three-dimensional turbulence structure measurements in air-water two-phase flow. Ph.D. thesis, Rensselaer Polytechnic Institute, Troy.
Wang, S. K., Lee, S. J., Jones, O. C. & Lahey, R. T., 1984 Local void fraction measurement techniques in two-phase bubbly flows using hot-film anemometry. 22th Heat Transfer Conf., Niagara Falls, 5–8 August.Google Scholar
Wang, S. K., Lee, S. J., Jones, O. C., Lahey, R. T.: 1987 3-D turbulence structure and phase distribution measurements in bubbly two-phase flows. Intl J. Multiphase, Flow 8, 327343.Google Scholar
Van Wijngaarden, L.: 1976 Hydrodynamic interaction between gas bubbles in liquid. J. Fluid Mech. 77, 2744.Google Scholar
Van Wijngaarden, L.: 1982 Hydrodynamic interactions in liquid gas flows. Appl. Sci. Res. 38, 331339.Google Scholar
Yeh, T. T. & Van Atta, C. W. 1973 Spectral transfer of scalar and velocity fields in heat-grid turbulence. J. Fluid Mech. 58, 233261.Google Scholar