Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-08T20:03:02.975Z Has data issue: false hasContentIssue false

The turbulence cascade in the near wake of a square prism

Published online by Cambridge University Press:  20 July 2017

F. Alves Portela*
Affiliation:
Turbulence, Mixing and Flow Control Group, Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
G. Papadakis
Affiliation:
Turbulence, Mixing and Flow Control Group, Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
J. C. Vassilicos*
Affiliation:
Turbulence, Mixing and Flow Control Group, Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

We present a study of the turbulence cascade on the centreline of an inhomogeneous and anisotropic near-field turbulent wake generated by a square prism at a Reynolds number of $Re=3900$ using the Kármán–Howarth–Monin–Hill equation. This is the fully generalised scale-by-scale energy balance which, unlike the Kármán–Howarth equation, does not require homogeneity or isotropy assumptions. Our data are obtained from a direct numerical simulation and therefore enable us to access all of the processes involved in this energy balance. A significant range of length scales exists where the orientation-averaged nonlinear interscale transfer rate is approximately constant and negative, indicating a forward turbulence cascade on average. This average cascade consists of coexisting forward and inverse cascade behaviours in different scale-space orientations. With increasing distance from the prism but within the near field of the wake, the orientation-averaged nonlinear interscale transfer rate tends to be approximately equal to minus the turbulence dissipation rate even though all of the inhomogeneity-related energy processes in the scale-by-scale energy balance are significant, if not equally important. We also find well-defined near $-5/3$ energy spectra in the streamwise direction, in particular at a centreline position where the inverse cascade behaviour occurs for streamwise oriented length scales.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A., Smalley, R. J., Zhou, T., Anselmet, F. & Danaila, L. 2003 Similarity of energy structure functions in decaying homogeneous isotropic turbulence. J. Fluid Mech. 487, 245269.CrossRefGoogle Scholar
Arslan, T., El Khoury, G. K., Pettersen, B. & Andersson, H. I. 2012 Simulations of flow around a three-dimensional square cylinder using LES and DNS. In The Seventh International Colloquium on Bluff Body Aerodynamics and Applications, pp. 909918. The International Association for Wind Engineering.Google Scholar
Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W. D., Kaushik, D. et al. 2016 PETSc users manual. Tech. Rep. ANL-95/11 – Revision 3.7. Argonne National Laboratory.CrossRefGoogle Scholar
Bearman, P. W. & Obasaju, E. D. 1982 An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders. J. Fluid Mech. 119, 297321.Google Scholar
Benedict, L. H. & Gould, R. D. 1996 Towards better uncertainty estimates for turbulence statistics. Exp. Fluids 22 (2), 129136.Google Scholar
Bloor, M. S. & Gerrard, J. H. 1966 Measurements on turbulent vortices in a cylinder wake. Proc. R. Soc. Lond. A 294 (1438), 319342.Google Scholar
Braza, M., Perrin, R. & Hoarau, Y. 2006 Turbulence properties in the cylinder wake at high Reynolds numbers. J. Fluids Struct. 22 (6–7), 757771.Google Scholar
Cantwell, B. J. & Coles, D. 1983 An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. J. Fluid Mech. 136, 321.CrossRefGoogle Scholar
Castro, I. P. 2016 Dissipative distinctions. J. Fluid Mech. 788, 14.Google Scholar
Champagne, F. H., Harris, V. G. & Corrsin, S. 1970 Experiments on nearly homogeneous turbulent shear flow. J. Fluid Mech. 41 (01), 81.CrossRefGoogle Scholar
Chen, J. M. & Liu, C. H. 1999 Vortex shedding and surface pressures on a square cylinder at incidence to a uniform air stream. Intl J. Heat Fluid Flow 20 (6), 592597.Google Scholar
Danaila, L., Krawczynski, J. F., Thiesset, F. & Renou, B. 2012 Yaglom-like equation in axisymmetric anisotropic turbulence. Physica D 241 (3), 216223.Google Scholar
Duchon, J. & Robert, R. 1999 Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes equations. Nonlinearity 13 (1), 249255.Google Scholar
Durão, D. F. G., Heitor, M. V. & Pereira, J. C. F. 1988 Measurements of turbulent and periodic flows around a square cross-section cylinder. Exp. Fluids 6 (5), 298304.Google Scholar
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.Google Scholar
George, W. K. 1978 Processing of random signals. In Dynamic Flow Conference on Dynamic Measurements in Unsteady Flows (ed. Hansen, B. W.), pp. 757800. Springer.Google Scholar
Gomes-Fernandes, R., Ganapathisubramani, B. & Vassilicos, J. C. 2015 The energy cascade in near-field non-homogeneous non-isotropic turbulence. J. Fluid Mech. 771, 676705.Google Scholar
Goto, S. & Vassilicos, J. C. 2015 Energy dissipation and flux laws for unsteady turbulence. Phys. Lett. A 379 (16–17), 11441148.Google Scholar
Goto, S. & Vassilicos, J. C. 2016 Local equilibrium hypothesis and Taylor’s dissipation law. Fluid Dyn. Res. 48 (2), 021402.Google Scholar
Hearst, R. J. & Lavoie, P. 2014 Scale-by-scale energy budget in fractal element grid-generated turbulence. J. Turbul. 15 (8), 540554.CrossRefGoogle Scholar
Hill, R. J. 1997 Applicability of Kolmogorov’s and Monin’s equations of turbulence. J. Fluid Mech. 353, 6781.Google Scholar
Hill, R. J. 2001 Equations relating structure functions of all orders. J. Fluid Mech. 434, 379388.Google Scholar
Hill, R. J. 2002a Exact second-order structure-function relationships. J. Fluid Mech. 468, 317326.Google Scholar
Hill, R. J.2002b The approach of turbulence to the locally homogeneous asymptote as studied using exact structure-function equations. arXiv:0206034, pp. 1–24.Google Scholar
Hu, J. C., Zhou, Y. & Dalton, C. 2006 Effects of the corner radius on the near wake of a square prism. Exp. Fluids 40 (1), 106118.Google Scholar
Issa, R. I. 1986 Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62 (1), 4065.Google Scholar
Klebanoff, P. S.1955 Characteristics of turbulence in a boundary layer with zero pressure gradient. Tech. Rep. 1247. National Advisory Committee for Aeronautics.Google Scholar
Kolmogorov, A. N. 1941a The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301305.Google Scholar
Kolmogorov, A. N. 1941b On the degeneration of isotropic turbulence in an incompressible viscous fluid. Dokl. Akad. Nauk SSSR 31, 319323.Google Scholar
Kolmogorov, A. N. 1941c Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 1921.Google Scholar
Kraichnan, R. H. 1974 On Kolmogorov’s inertial-range theories. J. Fluid Mech. 62 (02), 305.Google Scholar
Kravchenko, A. G. & Moin, P. 2000 Numerical studies of flow over a circular cylinder at Re D = 3900. Phys. Fluids 12 (2), 403.Google Scholar
Laizet, S., Nedić, J. & Vassilicos, J. C. 2015 The spatial origin of - 5/3 spectra in grid-generated turbulence. Phys. Fluids 27 (6), 065115.Google Scholar
Laizet, S., Vassilicos, J. C. & Cambon, C. 2013 Interscale energy transfer in decaying turbulence and vorticity–strain-rate dynamics in grid-generated turbulence. Fluid Dyn. Res. 45 (6), 061408.CrossRefGoogle Scholar
Lee, M. & Kim, G. 2001a A study on the near wake of a square cylinder using particle image velocimetry (I) – mean flow. Trans. Korean Soc. Mech. Engng 25 (10), 14081416. (in Korean).Google Scholar
Lee, M. & Kim, G. 2001b A study on the near wake of a square cylinder using particle image velocimetry (II) – turbulence characteristics. Trans. Korean Soc. Mech. Engng 25 (10), 14171426 (in Korean).Google Scholar
Lehmkuhl, O., Rodríguez, I., Borrell, R. & Oliva, A. 2013 Low-frequency unsteadiness in the vortex formation region of a circular cylinder. Phys. Fluids 25 (8), 085109.Google Scholar
Lesieur, M. 2008 Turbulence in Fluids, 4th edn. Springer.Google Scholar
Leslie, D. C. 1973 Developments in the Theory of Turbulence. Clarendon Press.Google Scholar
Lindborg, E. 1996 A note on Kolmogorov’s third-order structure-function law, the local isotropy hypothesis and the pressure–velocity correlation. J. Fluid Mech. 326, 343356.Google Scholar
Lindborg, E. 1999 Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech. 388 (1999), 259288; S0022112099004851.Google Scholar
Lumley, J. L. 1965 Interpretation of time spectra measured in high-intensity shear flows. Phys. Fluids 8 (6), 1056.Google Scholar
Lyn, D. A., Einav, S., Rodi, W. & Park, J. H. 1995 A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder. J. Fluid Mech. 304, 285.Google Scholar
Ma, X., Karamanos, G. S. & Karniadakis, G. E. 2000 Dynamics and low-dimensionality of a turbulent near wake. J. Fluid Mech. 410, 2965.Google Scholar
Mathieu, J. & Scott, J. F. 2000 An Introduction to Turbulent Flow. Cambridge University Press.CrossRefGoogle Scholar
McComb, W. D. 2014 Homogeneous, Isotropic Turbulence. Oxford University Press.Google Scholar
Melina, G., Bruce, P. J. K. & Vassilicos, J. C. 2016 Vortex shedding effects in grid-generated turbulence. Phys. Rev. Fluids 1 (4), 044402.Google Scholar
Mizota, T. & Okajima, A. 1981 Experimental studies of time mean flows around rectangular prisms. JSCE 312, 3947 (in Japanese).Google Scholar
Nedić, J., Tavoularis, S. & Marusic, I. 2017 Dissipation scaling in constant-pressure turbulent boundary layers. Phys. Rev. Fluids 2 (3), 032601.Google Scholar
Norberg, C. 1993 Flow around rectangular cylinders: pressure forces and wake frequencies. J. Wind Engng Ind. Aerodyn. 49 (1–3), 187196.Google Scholar
Obligado, M., Dairay, T. & Vassilicos, J. C. 2016 Nonequilibrium scalings of turbulent wakes. Phys. Rev. Fluids 1 (4), 044409.Google Scholar
Obukhov, A. M. 1941 On the energy distribution in the spectrum of a turbulent flow. Dokl. Akad. Nauk SSSR 32 (1), 454466. (in Russian).Google Scholar
Ong, L. & Wallace, J. 1996 The velocity field of the turbulent very near wake of a circular cylinder. Exp. Fluids 20 (6), 441453.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Rogers, M. M. & Moser, R. D. 1994 Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids 6 (2), 903.CrossRefGoogle Scholar
Sohankar, A. 2006 Flow over a bluff body from moderate to high Reynolds numbers using large eddy simulation. Comput. Fluids 35 (10), 11541168.Google Scholar
Sohankar, A., Norberg, C. & Davidson, L. 1999 Simulation of three-dimensional flow around a square cylinder at moderate Reynolds numbers. Phys. Fluids 11 (2), 288.Google Scholar
Taylor, G. I. 1935 Statistical theory of turbulence. Proc. R. Soc. Lond. A 23 (2), 421444.Google Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT.Google Scholar
Thiesset, F., Antonia, R. A. & Danaila, L. 2013a Restricted scaling range models for turbulent velocity and scalar energy transfers in decaying turbulence. J. Turbul. 14 (3), 2541.Google Scholar
Thiesset, F., Danaila, L. & Antonia, R. A. 2011a Bilans énergétiques à chaque échelle prenant en considération le mouvement cohérent. In 20ème Congrès Français de Mécanique. AFM.Google Scholar
Thiesset, F., Danaila, L. & Antonia, R. A. 2013b Dynamical effect of the total strain induced by the coherent motion on local isotropy in a wake. J. Fluid Mech. 720, 393423.Google Scholar
Thiesset, F., Danaila, L. & Antonia, R. A. 2016 Dynamical interactions between the coherent motion and small scales in a cylinder wake. J. Fluid Mech. 749, 201226.Google Scholar
Thiesset, F., Danaila, L., Antonia, R. A. & Zhou, T. 2011b Scale-by-scale energy budgets which account for the coherent motion. J. Phys.: Conf. Ser. 318 (5), 052040.Google Scholar
Trias, F. X., Gorobets, A. & Oliva, A. 2015 Turbulent flow around a square cylinder at Reynolds number 22 000: a DNS study. Comput. Fluids 123 (22), 8798.Google Scholar
Tsinober, A. 2009 An Informal Conceptual Introduction to Turbulence, 2nd edn. Springer.Google Scholar
Uberoi, M. S. & Freymuth, P. 1969 Spectra of turbulence in wakes behind circular cylinders. Phys. Fluids 12 (7), 1359.Google Scholar
Valente, P. C. & Vassilicos, J. C. 2015 The energy cascade in grid-generated non-equilibrium decaying turbulence. Phys. Fluids 27 (4), 045103.Google Scholar
Vassilicos, J. C. 2015 Dissipation in turbulent flows. Annu. Rev. Fluid Mech. 47 (1), 95114.Google Scholar
Voke, P. 1996 Flow past a square cylinder: test case LES2. In Direct and Large Eddy Simulation II, vol. 5, pp. 355373. Springer.Google Scholar
Wissink, J. G. & Rodi, W. 2008 Numerical study of the near wake of a circular cylinder. Intl J. Heat Fluid Flow 29 (4), 10601070.Google Scholar
Wyngaard, J. C. & Clifford, S. F. 1977 Taylor’s hypothesis and high-frequency turbulence spectra. J. Atmos. Sci. 34 (6), 922929.Google Scholar
Yasuda, T. & Vassilicos, J. C.2017 Inhomogeneous energy cascade in periodic turbulence (in preparation).Google Scholar
Zhou, Y. & Antonia, R. A. 1992 Convection velocity measurements in a cylinder wake. Exp. Fluids 13, 6370.Google Scholar