Hostname: page-component-f554764f5-sl7kg Total loading time: 0 Render date: 2025-04-21T01:28:28.266Z Has data issue: false hasContentIssue false

Trapping microswimmers in acoustic streaming flow

Published online by Cambridge University Press:  03 April 2025

Xuyang Sun
Affiliation:
Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, PR China
Wenchang Tan*
Affiliation:
Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, PR China State Key Laboratory for Turbulence and Complex Systems, Peking University, Beijing, PR China PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, Guangdong, PR China Shenzhen Graduate School, Peking University, Shenzhen, Guangdong, PR China
Yi Man*
Affiliation:
Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, PR China State Key Laboratory for Turbulence and Complex Systems, Peking University, Beijing, PR China
*
Corresponding authors: Yi Man, [email protected]; Wenchang Tan, [email protected]
Corresponding authors: Yi Man, [email protected]; Wenchang Tan, [email protected]

Abstract

The acoustofluidic method holds great promise for manipulating micro-organisms. When exposed to the steady vortex structures of acoustic streaming flow, these micro-organisms exhibit intriguing dynamic behaviours, such as hydrodynamic trapping and aggregation. To uncover the mechanisms behind these behaviours, we investigate the swimming dynamics of both passive and active particles within a two-dimensional acoustic streaming flow. By employing a theoretically calculated streaming flow field, we demonstrate the existence of stable bounded orbits for particles. Additionally, we introduce rotational diffusion and examine the distribution of particles under varying flow strengths. Our findings reveal that active particles can laterally migrate across streamlines and become trapped in stable bounded orbits closer to the vortex centre, whereas passive particles are confined to movement along the streamlines. We emphasise the influence of the flow field on the distribution and trapping of active particles, identifying a flow configuration that maximises their aggregation. These insights contribute to the manipulation of microswimmers and the development of innovative biological microfluidic chips.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ahmed, D., Ozcelik, A., Bojanala, N., Nama, N., Upadhyay, A., Chen, Y., Hanna-Rose, W. & Huang, T.J. 2016 Rotational manipulation of single cells and organisms using acoustic waves. Nat. Commun. 7 (1), 11085.Google ScholarPubMed
Aranson, I.S. 2022 Bacterial active matter. Rep. Prog. Phys. 85 (7), 076601.Google ScholarPubMed
Arguedas-Leiva, J. & Wilczek, M. 2020 Microswimmers in an axisymmetric vortex flow. New J. Phys. 22 (5), 053051.Google Scholar
Baker, R. 2019 Fight the flow: the role of shear in artificial rheotaxis for individual and collective motion. Nanoscale 11 (22), 1094410951.Google ScholarPubMed
Bechinger, C., Leonardo, R.D., Löwen, H., Reichhardt, C., Volpe, G. & Volpe, G. 2016 Active particles in complex and crowded environments. Rev. Mod. Phys. 88 (4), 045006.CrossRefGoogle Scholar
Berman, S.A. & Mitchell, K.A. 2020 Trapping of swimmers in a vortex lattice. Chaos 30 (6), 063121.Google Scholar
Butenko, A.V., Mogilko, E., Amitai, L., Pokroy, B. & Sloutskin, E. 2012 Coiled to diffuse: Brownian motion of a helical bacterium. Langmuir 28 (36), 1294112947.Google ScholarPubMed
Chen, Y., Fang, Z., Merritt, B., Strack, D., Xu, J. & Lee, S. 2016 Onset of particle trapping and release via acoustic bubbles. Lab on a Chip 16 (16), 30243032.CrossRefGoogle ScholarPubMed
Collins, D.J., Khoo, B.L., Ma, Z., Winkler, A., Weser, R., Schmidt, H., Han, J. & Ai, Y. 2017 Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming. Lab on a Chip 17 (10), 17691777.Google Scholar
Dey, R., Buness, C.M., Hokmabad, B.V., Jin, C. & Maass, C.C. 2022 Oscillatory rheotaxis of artificial swimmers in microchannels. Nat. Commun. 13 (1), 2952.CrossRefGoogle ScholarPubMed
Drescher, K., Dunkel, J., Cisneros, L.H., Ganguly, S. & Goldstein, R.E. 2011 Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering. Proc. Natl Acad. Sci. 108 (27), 1094010945.CrossRefGoogle ScholarPubMed
Durham, W.M., Climent, E., Barry, M., Lillo, F.De, Boffetta, G., Cencini, M. & Stocker, R. 2013 Turbulence drives microscale patches of motile phytoplankton. Nat. Commun. 4 (1), 2148.CrossRefGoogle ScholarPubMed
Durham, W.M., Climent, E. & Stocker, R. 2011 Gyrotaxis in a steady vortical flow. Phys. Rev. Lett. 106 (23), 238102.CrossRefGoogle Scholar
Gao, Y., Wu, M., Lin, Y., Zhao, W. & Xu, J. 2020 Acoustic bubble-based bidirectional micropump. Microfluid. Nanofluid. 24 (4), 29.CrossRefGoogle Scholar
Gao, Y., Wu, M., Luan, Q., Papautsky, I. & Xu, J. 2022 Acoustic bubble for spheroid trapping, rotation, and culture: a tumor-on-a-chip platform (abstract platform). Lab on a Chip 22 (4), 805813.CrossRefGoogle ScholarPubMed
Geng, W., 2023 An ultra-compact acoustofluidic device based on the narrow-path travelling surface acoustic wave (np-TSAW) for label-free isolation of living circulating tumor cells. Anal. Chim. Acta 1255, 341138.CrossRefGoogle ScholarPubMed
Hope, A., Croze, O.A., Poon, W.C.K., Bees, M.A. & Haw, M.D. 2016 Resonant alignment of microswimmer trajectories in oscillatory shear flows. Phys. Rev. Fluids 1 (5), 051201.CrossRefGoogle Scholar
Jeffery, G.B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid, In Proceedings of the Royal Society of London. Series A 102, pp. 161179.Google Scholar
Kantsler, V., Dunkel, J., Blayney, M. & Goldstein, R.E. 2014 Rheotaxis facilitates upstream navigation of mammalian sperm cells. eLife 27 (3), e02403.Google Scholar
Koens, L. & Lauga, E. 2014 The passive diffusion of leptospira interrogans. Phys. Biol. 11 (6), 066008.CrossRefGoogle ScholarPubMed
Kutluk, H., Viefhues, M. & Constantinou, I. 2024 Integrated microfluidics for single-cell separation and on-chip analysis: novel applications and recent advances. Small Sci. 4 (4), 2300206.CrossRefGoogle Scholar
Lauga, E. 2016 Bacterial hydrodynamics. Annu. Rev. Fluid Mech. 48 (1), 105130.CrossRefGoogle Scholar
Lee, M., Lohrmann, C., Szuttor, K., Auradou, H. & Holm, C. 2021 The influence of motility on bacterial accumulation in a microporous channel. Soft Matt. 17 (4), 893902.CrossRefGoogle Scholar
Li, Y., Liu, X., Huang, Q., Ohta, A.T. & Arai, T. 2021 Bubbles in microfluidics: an all-purpose tool for micromanipulation. Lab On a Chip 21 (6), 10161035.Google ScholarPubMed
Liang, C., Zhan, C., Zeng, F., Xu, D., Wang, Y., Zhao, W., Zhang, J., Guo, J., Feng, H. & Ma, X. 2018 Bilayer tubular micromotors for simultaneous environmental monitoring and remediation. ACS Nano 10 (41), 3509935107.Google ScholarPubMed
Liu, L. 2022 Magnetically actuated biohybrid microswimmers for precise photothermal muscle contraction. ACS Nano 16 (4), 65156526.CrossRefGoogle ScholarPubMed
Liu, L., Zhang, L., Zhang, X., Dong, X., Jiang, X., Huang, X., Li, W., Xie, X. & Qiu, X. 2024 Analysis of cellular response to drugs with a microfluidic single-cell platform based on hyperspectral imaging. Anal. Chim. Acta 1288, 342158.Google ScholarPubMed
Longuet-Higgins, M.S. 1998 Viscous streaming from an oscillating spherical bubble, Proc. R. Soc. Lond. Series A: Math. Phys. Engng Sci. 454(1970),725742.CrossRefGoogle Scholar
Lu, X., Martin, A., Soto, F., Angsantikul, P., Li, J., Chen, C., Liang, Y., Hu, J., Zhang, L. & Wang, J. 2019 Parallel label-free isolation of cancer cells using arrays of acoustic microstreaming traps. Adv. Mater. Technol. 4 (2), 1800374.CrossRefGoogle Scholar
Marcos, & Stocker, R. 2006 Microorganisms in vortices: a microfluidic setup. Limnol. Oceanogr. Methods 4 (10), 392398.Google Scholar
Marmottant, P. & Hilgenfeldt, S. 2004 A bubble-driven microfluidic transport element for bioengineering. Proc. Natl Acad. Sci. 101 (26), 95239527.Google ScholarPubMed
Mathijssen, A.J.T.M., Figueroa-Morales, N., Junot, G., Clément, E., Lindner, A. & Zöttl, A. 2019 Oscillatory surface rheotaxis of swimming e. coli bacteria. Nat. Commun. 10 (4), 3434.CrossRefGoogle ScholarPubMed
Nitsche, L.C. & Hinch, E.J. 1997 Shear-induced lateral migration of brownian rigid rods in parabolic channel flow. J. Fluid Mech. 332, 121.CrossRefGoogle Scholar
Park, B., Jiang, Z., Oncay, Y. & Metin, S. 2017 Multifunctional bacteria-driven microswimmers for targeted active drug delivery. ACS Nano 11 (9), 89108923.CrossRefGoogle ScholarPubMed
Rogers, P. & Neild, A. 2011 Selective particle trapping using an oscillating microbubble. Lab on a Chip 11 (21), 37103715.Google ScholarPubMed
Rossi, C.S., Coulon, F., Ma, S., Zhang, Y.S. & Yang, Z. 2023 Microfluidics for rapid detection of live pathogens. Adv. Funct. Mater. 33 (21), 2212081.CrossRefGoogle Scholar
Rubio, L.D., Potomkin, M., Baker, R.D., Sen, A., Berlyand, L. & Aranson, I.S. 2021 Self-propulsion and shear flow align active particles in nozzles and channels. Adv. Intell. Syst. 3 (2), 2000178.CrossRefGoogle Scholar
Rusconi, R., Guasto, J.S. & Stocker, R. 2014 Bacterial transport suppressed by fluid shear. Nat. Phys. 10 (3), 212217.CrossRefGoogle Scholar
She, J. 2024 Defining the biogeographical map and potential bacterial translocation of microbiome in human surface organs. Nat. Commun. 15 (1), 427.CrossRefGoogle Scholar
Sipos, O., Nagy, K., Leonardo, R.D. & Galajda, P. 2015 Hydrodynamic trapping of swimming bacteria by convex walls. Phys. Rev. Lett. 114 (25), 258104.Google ScholarPubMed
Sokolov, A. & Aranson, I.S. 2016 Rapid expulsion of microswimmers by a vortical flow. Nat. Commun. 7 (1), 11114.CrossRefGoogle ScholarPubMed
Spagnolie, S.E., Moreno-Flores, G.R., Bartolo, D. & Lauga, E. 2015 Geometric capture and escape of a microswimmer colliding with an obstacle. Soft Matt. 11 (17), 33963411.CrossRefGoogle ScholarPubMed
Spelman, T.A. & Lauga, E. 2017 Arbitrary axisymmetric steady streaming: flow, force and propulsion. J. Engng Math. 105 (1), 3165.CrossRefGoogle Scholar
Stark, H. 2016 Swimming in external fields. Eur. Phys. J. Special Topics 225 (11-12), 23692387.Google Scholar
Tanasijevic, I. & Lauga, E. 2022 Microswimmers in vortices: dynamics and trapping. Soft Matt. 18 (47), 89318944.CrossRefGoogle ScholarPubMed
Tavaddod, S., Charsooghi, M.A., Abdi, F., Khalesifard, H. & Golestanian, R. 2011 Probing passive diffusion of flagellated and deflagellated escherichia coli . Eur. Phys. J. E 34 (2), 17.CrossRefGoogle ScholarPubMed
Torney, C. & Neufeld, Z. 2007 Transport and aggregation of self-propelled particles in fluid flows. Phys. Rev. Lett. 99 (7), 078101.Google ScholarPubMed
Vennamneni, L., Nambiar, S. & Subramanian, G. 2020 Shear-induced migration of microswimmers in pressure-driven channel flow. J. Fluid Mech. 890, A15.CrossRefGoogle Scholar
Wadhwa, N. & Berg, H.C. 2022 Bacterial motility: machinery and mechanisms. Nat. Rev. Microbiol. 20 (3), 161173.Google ScholarPubMed
Weiss, A.S., Niedermeier, L.S., von Strempel, A., Burrichter, A.G., Ring, D., Meng, C., Kleigrewe, K., Lincetto, C., Hübner, J. & Stecher, B. 2023 Nutritional and host environments determine community ecology and keystone species in a synthetic gut bacterial community. Nat. Commun. 14 (1), 4780.Google Scholar
Wheeler, J.D., Secchi, E., Rusconi, R. & Stocker, R. 2019 Not just going with the flow: the effects of fluid flow on bacteria and plankton. Annu. Rev. Cell Dev. Biol. 35 (1), 213237.CrossRefGoogle ScholarPubMed
Yazdi, S. & Ardekani, A.M. 2012 Bacterial aggregation and biofilm formation in a vortical flow. Biomicrofluidics 6 (4), 44114.Google Scholar
Yerasi, S.R., Govindarajan, R. & Vincenzi, D. 2022 Spirographic motion in a vortex. Phys. Rev. Fluids 7 (7), 074402.CrossRefGoogle Scholar
Zhang, P., Bachman, H., Ozcelik, A. & Huang, T.J. 2020 Acoustic microfluidics. Annu. Rev. Anal. Chem. 13 (1), 1743.CrossRefGoogle ScholarPubMed
Zöttl, A. & Stark, H. 2012 Nonlinear dynamics of a microswimmer in poiseuille flow. Phys. Rev. Lett. 108 (21), 218104.CrossRefGoogle ScholarPubMed