Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T00:03:46.510Z Has data issue: false hasContentIssue false

Transport of passive scalar in turbulent shear flow under a clean or surfactant-contaminated free surface

Published online by Cambridge University Press:  22 February 2011

HAMID R. KHAKPOUR
Affiliation:
Department of Civil Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
LIAN SHEN*
Affiliation:
Department of Civil Engineering, Johns Hopkins University, Baltimore, MD 21218, USA Center for Environmental & Applied Fluid Mechanics, Johns Hopkins University, Baltimore, MD 21218, USA
DICK K. P. YUE*
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

Direct numerical simulation is performed to study the turbulent transport of passive scalars near clean and surfactant-contaminated free surfaces. As a canonical problem, a turbulent shear flow interacting with a flat free surface is considered, with a focus on the effect of splats and anti-splats on the scalar transport processes. Using conditional averaging of strong surface flux events, it is shown that these are associated with coherent hairpin vortex structures emerging from the shear flow. The upwelling at the splat side of the oblique hairpin vortices greatly enhances the scalar surface flux. In the presence of surfactants, the splats at the surface are suppressed by the surface tension gradients caused by spatial variation of surfactant concentration; as a result, scalar flux is reduced. Conditional averaging of weak surface flux events shows that these are caused by anti-splats with which surface-connected vortices are often associated. When surfactants are present, the downdraught transport at the surface-connected vortices is weakened. Turbulence statistics of the velocity and scalar fields are performed in terms of mean and fluctuation profiles, scalar flux, turbulent diffusivity and scalar variance budget. Using surface layer quantification based on an analytical similarity solution of the mean shear flow, it is shown that the depth of the scalar statistics variation is scaled on the basis of the Schmidt number. In the presence of surfactants, the scalar statistics have the characteristics of those near a solid wall in contrast to those near a clean surface, which leads to thickened scalar boundary layer and reduced surface flux.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ananthakrishnan, P. & Yeung, R. W. 1994 Nonlinear interaction of a vortex pair with clean and surfactant-covered free surface. Wave Motion 19, 343365.CrossRefGoogle Scholar
Anthony, D. G., Hirsa, A. & Willmarth, W. W. 1991 On the interaction of a submerged turbulent jet with a clean or contaminated free surface. Phys. Fluids A 3, 245247.CrossRefGoogle Scholar
Asher, W. E. & Pankow, J. F. 1989 Direct observation of concentration fluctuations close to a gas–liquid interface. Chem. Engng Sci. 44, 14511455.CrossRefGoogle Scholar
Asher, W. E. & Pankow, J. F. 1991 Prediction of gas/water mass transport coefficients by a surface renewal model. Environ. Sci. Technol. 25, 12941300.CrossRefGoogle Scholar
Atmane, M. A., Asher, W. E. & Jessup, A. T. 2004 On the use of the active infrared technique to infer heat and gas transfer velocities at the air–water free surface. J. Geophys. Res. 109, C08S14.Google Scholar
Atmane, M. A. & George, J. 2002 Gas transfer across a zero-shear surface: a local approach. In Gas Transfer at Water Surfaces (ed. Donelan, M. A., Drennan, W. M., Saltzman, E. S. & Wanninkhof, R.), pp. 255259. American Geophysical Union.Google Scholar
Banerjee, S., Scott, D. S. & Rhodes, E. 1968 Mass transfer to falling wavy liquid films in turbulent flow. Indust. Engng Chem. Fundam. 7, 2227.CrossRefGoogle Scholar
Bernal, L. P., Hirsa, A., Kwon, J. T. & Willmarth, W. W. 1989 On the interaction of vortex rings and pairs with a free surface for varying amounts of surface active agent. Phys. Fluids A 1, 20012004.CrossRefGoogle Scholar
Blank, M. & Britten, J. S. 1965 Transport properties of condensed monolayers. J. Colloid Sci. 20, 789800.CrossRefGoogle ScholarPubMed
Bock, E. J. & Frew, N. M. 1993 Static and dynamic response of natural multicomponent oceanic surface films to compression and dilation: laboratory and field observations. J. Geophys. Res. 98, 1459914617.CrossRefGoogle Scholar
Bock, E. J., Hara, T., Frew, N. M. & McGillis, W. R. 1999 Relationship between air–sea gas transfer and short wind waves. J. Geophys. Res. 104, 2582125831.CrossRefGoogle Scholar
Calmet, I. & Magnaudet, J. 1997 Large-eddy simulation of high-Schmidt number mass transfer in a turbulent channel flow. Phys. Fluids 9, 438455.CrossRefGoogle Scholar
Calmet, I. & Magnaudet, J. 1998 High-Schmidt number mass transfer through turbulent gas–liquid interfaces. Intl J. Heat Fluid Flow 19, 522532.CrossRefGoogle Scholar
Chu, C. R. & Jirka, G. H. 1992 Turbulent gas flux measurements below the air–water interface of a grid-stirred tank. Intl J. Heat Mass Transfer 35, 19571968.Google Scholar
Danckwerts, P. V. 1951 Significance of liquid-film coefficients in gas absorption. Indust. Engng Chem. 43, 14601467.CrossRefGoogle Scholar
Davies, J. T. 1966 The effects of surface films in damping eddies at a free surface of a turbulent liquid. Proc. R. Soc. A 1423, 515526.Google Scholar
Edwards, D. A., Brenner, H. & Wasan, D. T. 1991 Interfacial Transport Processes and Rheology. Butterworth-Heinemann.Google Scholar
Flack, K. A., Saylor, J. R. & Smith, G. B. 2001 Near-surface turbulence for evaporative convection at an air/water interface. Phys. Fluids 13, 33383345.CrossRefGoogle Scholar
Fortescue, G. E. & Pearson, J. R. A. 1967 On gas absorption into a turbulent liquid. Chem. Engng Sci. 22, 11631176.CrossRefGoogle Scholar
Frew, N. M., Bock, E. J., Schimpf, U., Hara, T., Haussecker, H., Edson, J. B., McGillis, W. R., Nelson, R. K., McKenna, S. P., Uz, B. M. & Jähne, B. 2004 Air–sea gas transfer: its dependence on wind stress, small-scale roughness, and surface films. J. Geophys. Res. 109, C08S17.Google Scholar
Frew, N. M., Goldman, J. C., Dennett, M. R. & Johnson, A. S. 1990 Impact of phytoplankton-generated surfactants on air–sea exchange. J. Geophys. Res. 95, 33373352.CrossRefGoogle Scholar
Garbe, C. S., Schimpf, U. & Jähne, B. 2004 A surface renewal model to analyze infrared image sequences of the ocean surface for the study of air–sea heat and gas exchange. J. Geophys. Res. 109, C08S15.Google Scholar
George, J., Minel, F. & Grisenti, M. 1994 Physical and hydrodynamical parameters controlling gas–liquid mass transfer. Intl J. Heat Mass Transfer 37, 15691578.CrossRefGoogle Scholar
Goldman, J. C., Dennett, M. R. & Frew, N. M. 1988 Surfactant effects on air–sea gas exchange under turbulent conditions. Deep-Sea Res. 35, 19531970.CrossRefGoogle Scholar
Handler, R. A., Leighton, R. I., Smith, G. B. & Nagaosa, R. 2003 Surfactant effects on passive scalar transport in a fully developed turbulent flow. Intl J. Heat Mass Transfer 46, 22192238.CrossRefGoogle Scholar
Handler, R. A., Saylor, J. R., Leighton, R. I. & Rovelstad, A. L. 1999 Transport of a passive scalar at a shear-free boundary in fully developed turbulent open channel flow. Phys. Fluids 11, 26072625.CrossRefGoogle Scholar
Hasegawa, Y. & Kasagi, N. 2008 Systematic analysis of high Schmidt number turbulent mass transfer across clean, contaminated and solid interfaces. Intl J. Heat Fluid Flow 29, 765773.CrossRefGoogle Scholar
Hasegawa, Y. & Kasagi, N. 2009 Hybrid DNS/LES of high Schmidt number mass transfer across turbulent air–water interface. Intl J. Heat Mass Transfer 52, 10121022.CrossRefGoogle Scholar
Herlina, & Jirka, G. H. 2004 Application of LIF to investigate gas transfer near the air–water interface in a grid-stirred tank. Exp. Fluids 37, 341349.CrossRefGoogle Scholar
Herlina, & Jirka, G. H. 2008 Experiments on gas transfer at the air–water interface induced by oscillating grid turbulence. J. Fluid Mech. 594, 183208.CrossRefGoogle Scholar
Higbie, R. 1935 The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans. AIChE 31, 365389.Google Scholar
Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K. & Johnson, C. A. (Eds) 2001 Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.Google Scholar
Jähne, B. & Haussecker, H. 1998 Air–water gas exchange. Annu. Rev. Fluid. Mech. 30, 443468.CrossRefGoogle Scholar
Jähne, B., Münnich, K. O., Bösinger, R., Dutzi, A., Huber, W. & Libner, P. 1987 On the parameters influencing air–water gas exchange. J. Geophys. Res. 92, 19371949.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Kasagi, N., Tomita, Y. & Kuroda, A. 1992 Direct numerical simulation of passive scalar field in a turbulent channel flow. J. Heat Transfer. 114, 598606.CrossRefGoogle Scholar
Kermani, A. 2010 Numerical study of turbulence and scalar transport process in free-surface and multi-phase flows. PhD thesis, Johns Hopkins University, Baltimore, MD.Google Scholar
Kermani, A. & Shen, L. 2009 Surface age of surface renewal in turbulent interfacial transport. Geophys. Res. Lett. 36, L10605.CrossRefGoogle Scholar
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308323.CrossRefGoogle Scholar
Komori, S., Murakami, Y. & Ueda, H. 1989 The relationship between surface-renewal and bursting motions in an open-channel flow. J. Fluid Mech. 203, 103123.CrossRefGoogle Scholar
Komori, S., Ueda, H., Ogino, F. & Mizushina, T. 1982 Turbulence structure and transport mechanism at the free surface in an open channel flow. Intl J. Heat Mass Transfer 25, 513521.Google Scholar
Krishnamoorthy, L. V. & Antonia, R. A. 1987 Temperature-dissipation measurements in a turbulent boundary layer. J. Fluid Mech. 176, 265281.CrossRefGoogle Scholar
Lakehal, D., Fulgosi, M., Yadigaroglu, G. & Banerjee, S. 2003 Direct numerical simulation of turbulent heat transfer across a mobile, sheared gas–liquid interface. J. Heat Transfer 125, 11291139.CrossRefGoogle Scholar
Lamont, J. C. & Scott, D. S. 1970 An eddy cell model of mass transfer into the surface of a turbulent liquid. AIChE J. 16, 513519.CrossRefGoogle Scholar
Lee, M. 2002 Visualization of oxygen transfer across the air–water interface using a fluorescence oxygen visualization method. Water Res. 36, 21402146.CrossRefGoogle ScholarPubMed
Lee, R. J. & Saylor, J. R. 2010 The effect of a surfactant monolayer on oxygen transfer across an air/water interface during mixed convection. Intl J. Heat Mass Transfer 53, 34053413.CrossRefGoogle Scholar
Lee, Y. H., Tsao, G. T. & Wankat, P. C. 1980 Hydrodynamic effect of surfactants on gas–liquid oxygen transfer. AIChE J. 26, 10081012.CrossRefGoogle Scholar
Leighton, R. I., Smith, G. B. & Handler, R. A. 2003 Direct numerical simulations of free convection beneath an air–water interface at low Rayleigh numbers. Phys. Fluids 15, 31813193.CrossRefGoogle Scholar
Lewis, W. K. & Whitman, W. G. 1924 Principles of gas absorption. Indust. Engng Chem. 16, 12151220.CrossRefGoogle Scholar
Lide, D. R. 2007 Handbook of Chemistry and Physics. CRC Press.Google Scholar
Liss, P. S. & Slater, P. G. 1974 Flux of gases across the air–sea interface. Nature 247, 181184.CrossRefGoogle Scholar
Liu, S., Kermani, A., Shen, L. & Yue, D. K. P. 2009 Investigation of coupled air–water turbulent boundary layers using direct numerical simulations. Phys. Fluids 21, 062108.CrossRefGoogle Scholar
Lu, D. M. & Hetsroni, G. 1995 Direct numerical simulation of a turbulent open channel flow with passive heat transfer. Intl J. Heat Mass Transfer 38, 32413251.CrossRefGoogle Scholar
Lyons, S. L., Hanratty, T. J. & McLaughlin, J. B. 1991 Direct numerical simulation of passive heat transfer in a turbulent channel flow. Intl J. Heat Mass Transfer 34, 11491161.CrossRefGoogle Scholar
Magnaudet, J. & Calmet, I. 2006 Turbulent mass transfer through a flat shear-free surface. J. Fluid Mech. 553, 155185.CrossRefGoogle Scholar
Mattingly, G. E. & Criminale, W. O. 1972 The stability of an incompressible two-dimensional wake. J. Fluid Mech. 51, 233272.CrossRefGoogle Scholar
McKenna, S. P. & McGillis, W. R. 2004 The role of free-surface turbulence and surfactants in air–water gas transfer. Intl J. Heat Mass Transfer 47, 539553.CrossRefGoogle Scholar
Moin, P. & Mahesh, K. 1998 Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid. Mech. 30, 539578.CrossRefGoogle Scholar
Münsterer, T. & Jähne, B. 1998 LIF measurements of concentration profiles in the aqueous mass boundary layer. Exp. Fluids 25, 190196.CrossRefGoogle Scholar
Na, Y. & Hanratty, T. J. 2000 Limiting behavior of turbulent scalar transport close to a wall. Intl J. Heat Mass Transfer 43, 1794–1758.CrossRefGoogle Scholar
Na, Y., Papavassiliou, D. V. & Hanratty, T. J. 1999 Use of direct numerical simulation to study the effect of Prandtl number on temperature fields. Intl J. Heat Fluid Flow 20, 187195.CrossRefGoogle Scholar
Nagaosa, R. 1999 Direct numerical simulation of vortex structures and turbulent scalar transfer across a free surface in a fully developed turbulence. Phys. Fluids 11, 15811595.CrossRefGoogle Scholar
Nagaosa, R. & Handler, R. A. 2003 Statistical analysis of coherent vortices near a free surface in a fully developed turbulence. Phys. Fluids 15, 375394.CrossRefGoogle Scholar
Nagaosa, R. & Saito, T. 1997 Turbulence structure and scalar transfer in stratified free-surface flows. AIChE J. 43, 23932404.CrossRefGoogle Scholar
Rashidi, M., Hetsroni, G. & Banerjee, S. 1991 Mechanisms of heat and mass transport at gas–liquid interfaces. Intl J. Heat Mass Transfer 34, 17991810.CrossRefGoogle Scholar
Sakata, E. K. & Berg, J. C. 1969 Surface diffusion in monolayers. Indust. Engng Chem. Fundam. 8, 570575.CrossRefGoogle Scholar
Sarpkaya, T. 1996 Vorticity, free surface, and surfactants. Annu. Rev. Fluid. Mech. 28, 83128.CrossRefGoogle Scholar
Saylor, J. R., Smith, G. B. & Flack, K. A. 2001 An experimental investigation of the surface temperature field during evaporative convection. Phys. Fluids 13, 428439.CrossRefGoogle Scholar
Schimpf, U., Garbe, C. S. & Jähne, B. 2004 Investigation of transport processes across the sea surface microlayer by infrared imagery. J. Geophys. Res. 109, C08S13.Google Scholar
Schladow, S. G., Lee, M., Hürzeler, B. E. & Kelly, P. B. 2002 Oxygen transfer across the air–water interface by natural convection in lakes. Limnol. Oceanogr. 47, 13941404.CrossRefGoogle Scholar
Shaw, D. A. & Hanratty, T. J. 1977 Turbulent mass transfer to a wall for large Schmidt numbers. AIChE J. 23, 2837.CrossRefGoogle Scholar
Shen, L., Triantafyllou, G. S. & Yue, D. K. P. 2000 Turbulent diffusion near a free surface. J. Fluid Mech. 407, 145166.CrossRefGoogle Scholar
Shen, L., Triantafyllou, G. S. & Yue, D. K. P. 2001 Mixing of a passive scalar near a free surface. Phys. Fluids 13 (4), 913926.CrossRefGoogle Scholar
Shen, L., Yue, D. K. P. & Triantafyllou, G. S. 2004 Effect of surfactants on free-surface turbulent flows. J. Fluid Mech. 506, 79115.CrossRefGoogle Scholar
Shen, L., Zhang, X., Yue, D. K. P. & Triantafyllou, G. S. 1999 The surface layer for free-surface turbulent flows. J. Fluid Mech. 386, 167212.CrossRefGoogle Scholar
Smith, G. B., Volino, R. J., Handler, R. A. & Leighton, R. I. 2001 The thermal signature of a vortex pair impacting a free surface. J. Fluid Mech. 444, 4978.CrossRefGoogle Scholar
Springer, T. G. & Pigford, R. L. 1970 Influence of surface turbulence and surfactants on gas transfer through liquid interfaces. Indust. Engng Chem. Fundam. 9, 458465.CrossRefGoogle Scholar
Tamburrino, A. & Gulliver, J. S. 2002 Free-surface turbulence and mass transfer in a channel flow. AIChE J. 48, 27322743.CrossRefGoogle Scholar
Triantafyllou, G. S. & Dimas, A. A. 1989 Interaction of two-dimensional separated flows with a free surface at low Froude numbers. Phys. Fluids A 1, 18131821.CrossRefGoogle Scholar
Tryggvason, G., Abdollahi-Alibeik, J., Willmarth, W. W. & Hirsa, A. 1992 Collision of a vortex pair with a contaminated free surface. Phys. Fluids 4, 12151229.CrossRefGoogle Scholar
Tsai, W. T. 1996 Impact of a surfactant on a turbulent shear layer under the air–sea interface. J. Geophys. Res. 110, 28577–28568.Google Scholar
Tsai, W. T. 1998 Vortex dynamics beneath a surfactant-contaminated ocean surface. J. Geophys. Res. 103, 919927.Google Scholar
Tsai, W. T. & Yue, D. K. P. 1995 Effects of soluble and insoluble surfactant on laminar interactions of vortical flows with a free surface. J. Fluid Mech. 289, 315349.CrossRefGoogle Scholar
Variano, E. A. & Cowen, E. A. 2004 Quantitative visualization of CO2 transfer at a turbulent free surface. EOS Trans. Am. Geophys. Union 84, OS160.Google Scholar
Wang, L., Dong, Y. H. & Lu, X. Y. 2005 An investigation of turbulent open channel flow with heat transfer by large eddy model. Comput. Fluids 34, 2347.CrossRefGoogle Scholar
Willert, C. E. & Gharib, M. 1997 The interaction of spatially modulated vortex pairs with free surfaces. J. Fluid Mech. 345, 227250.CrossRefGoogle Scholar
Zappa, C. J., Asher, W. E., Jessup, A. T., Klinke, J. & Long, S. R. 2004 Microbreaking and the enhancement of air–water transfer velocity. J. Geophys. Res. 109, C08S16.Google Scholar
Zhang, C., Shen, L. & Yue, D. K. P. 1999 The mechanism of vortex connection at a free surface. J. Fluid Mech. 384, 207241.CrossRefGoogle Scholar