Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-20T08:30:42.543Z Has data issue: false hasContentIssue false

The translational and rotational motions of an n-dimensional hypersphere through a viscous fluid at small Reynolds numbers

Published online by Cambridge University Press:  20 April 2006

Howard Brenner
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

Expressions are derived for the n-dimensional Stokes velocity and pressure fields (and stream function) corresponding, respectively, to the translation and rotation of a hypersphere in a viscous fluid at rest at infinity. These are utilized to calculate the force and first antisymmetric stress moment (‘torque’) on the n-dimensional hypersphere. They are also utilized to derive the generalizations of Faxén's laws for the force and stress moment corresponding to arbitrarily prescribed velocity fields on the hypersphere surface and at infinity.

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions. U.S. National Bureau of Standards.
Ackerberg, R. C. 1965 The viscous incompressible flow inside a cone. J. Fluid Mech. 21, 4781.Google Scholar
Amit, D. J. 1978 Field Theory, the Renormalization Group, and Critical Phenomena. McGraw-Hill.
Bateman, H. 1944 Partial Differential Equations of Mathematical Physics. Dover.
Brenner, H. 1964a The Stokes resistance of an arbitrary particle. II. An extension. Chem. Engng Sci. 19, 599629.Google Scholar
Brenner, H. 1964b The Stokes resistance of an arbitrary particle. III. Shear fields. Chem. Engng Sci. 19, 631651.Google Scholar
Brenner, H. 1964c The Stokes resistance of an arbitrary particle. IV. Arbitrary fields of flow. Chem. Engng Sci. 19, 703727.Google Scholar
Brenner, H. 1966a The Stokes resistance of an arbitrary particle. V. Symbolic operator representation of intrinsic resistance. Chem. Engng Sci. 21, 97109.Google Scholar
Brenner, H. 1966b Hydrodynamic resistance of particles at small Reynolds numbers. Adv. Chem. Engng, 6, 287438.Google Scholar
Brenner, H. 1981 Poiseuille flow through n-dimensional hypercircular and hyperelliptic cylinders. Z. angew. Math. Phys. 32, 347356.Google Scholar
Burns, J. C. 1969 The iterated equation of generalized axially symmetric potential theory. IV. Circle theorems. J. Austr. Math. Soc. 7, 152160.Google Scholar
Chang, I-D. 1961 Navier Stokes solutions at large distances from a finite body. J. Math. Mech. 10, 811876.Google Scholar
Chapman, S. & Cowling, T. G. 1970 The Mathematical Theory of Non-Uniform Gases, 3rd edn. Cambridge University Press.
De Gennes, P. G. 1979 Scaling Concepts in Polymer Physics. Cornell University Press.
Finn, R. & Noll, W. 1957 On the uniqueness and nonexistence of Stokes flows. Arch. Ratl Mech. Anal. 1, 97106.Google Scholar
Goldstein, H. 1950 Classical Mechanics. Addison-Wesley.
Goldstein, S. 1965 On backward boundary layers and flow in converging passages. J. Fluid Mech. 21, 3345.Google Scholar
Gradshteyn, I. S. & Ryzhik, I. M. 1965 Tables of Integrals, Series and Products. Academic.
Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics. Sitjhoff & Noordhoff.
Kaplun, S. 1957 Low Reynolds number flow past a circular cylinder. J. Math. Mech. 6, 595603.Google Scholar
Kaplun, S. & Lagerstrom, P. A. 1957 Asymptotic expansions of Navier—Stokes solutions for small Reynolds number. J. Math. Mech. 6, 585593.Google Scholar
Krakowski, M. & Charnes, A. 1951 Stokes paradox and biharmonic flows. Carnegie Inst. Technol. Tech. Rep. no. 37.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Addison-Wesley.
Oseen, C. W. 1927 Neuere Methoden und Ergebnisse in der Hydrodynamik. Leipzig: Akademische Verlagsgesellschaft.
Pai, I-Shih 1956 Viscous Flow Theory. Vol. I. Laminar Flow. D. van Nostrand.
Pfeuty, P. & Toulouse, G. 1977 Introduction to the Renormalization Group and to Critical Phenomena. Wiley-Interscience.
Proudman, I. & Pearson, J. R. A. 1957 Expansions at small Reynolds number for the flow past a sphere and a circular cylinder. J. Fluid Mech. 2, 237262.Google Scholar
Sommerfeld, A. 1964 Partial Differential Equations in Physics. Academic.
Sommerville, D. M. Y. 1958 An Introduction to the Geometry of N Dimensions. Dover.
Synge, J. L. & Schild, A. 1949 Tensor Calculus. University of Toronto Press.
Wilson, K. G. 1971 Renormalization group and critical phenomena. I: Renormalization group and the Kadanoff scaling picture. II: Phase-space cell analysis of critical behavior. Phys. Rev. B 4, 31743183, 31843205.Google Scholar
Wilson, K. G. 1974 Critical phenomena in 399 dimensions. Physica 73, 119128.Google Scholar
Wilson, K. G. & Fisher, M. E. 1972 Critical exponents in 399 dimensions. Phys. Rev. Lett. 28, 240243.Google Scholar
Wilson, K. G. & Kogut, J. B. 1974 The renormalization group and the e expansion. Phys. Rep. 12 C, 77199.Google Scholar
Witten, E. 1980 Quarks, atoms and the 1/N expansion. Phys. Today 33, 3843.Google Scholar