Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T22:13:11.112Z Has data issue: false hasContentIssue false

Transition to turbulence in an oscillatory flow over a rough wall

Published online by Cambridge University Press:  29 February 2016

Marco Mazzuoli
Affiliation:
Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Montallegro 1, 16145 Genova, Italy Institute for Hydromechanics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
Giovanna Vittori*
Affiliation:
Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Montallegro 1, 16145 Genova, Italy
*
Email address for correspondence: [email protected]

Abstract

A study of the oscillatory incompressible flow close to a wall covered with fixed rigid spheres is carried out by numerical means to provide information on unsteady flows over a rough wall. The simulations are carried out for two bottom configurations, characterized by different values of the diameter of the spheres and different values of the Reynolds number for a total of 10 cases. Three different flow regimes are identified as functions of both the Reynolds number and the diameter of the spheres. The force exerted by the flow on the spheres is discussed also in relation to the different flow regimes.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acarlar, M. S. & Smith, C. R. 1987 A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by a hemisphere protuberance. J. Fluid Mech. 175, 141.Google Scholar
Blondeaux, P. 1987 Turbulent boundary layer at the bottom of a gravity wave. J. Hydraul Res. 25, 447464.CrossRefGoogle Scholar
Blondeaux, P. & Vittori, G. 1994 Wall imperfections as a triggering mechanism for Stokes-layer transition. J. Fluid Mech. 264, 107135.Google Scholar
Carstensen, S., Sumer, B. M. & Fredsoe, J. 2010 Coherent structures in wave boundary layers. Part 1. Oscillatory motion. J. Fluid Mech. 646, 169206.Google Scholar
Carstensen, S., Sumer, B. M. & Fredsoe, J. 2012 A note on turbulent spots over a rough bed in wave boundary layers. Phys. Fluids 24 (11), 115104.CrossRefGoogle Scholar
Costamagna, P., Vittori, G. & Blondeaux, P. 2003 Coherent structures in oscillatory boundary layers. J. Fluid Mech. 474, 133.Google Scholar
Dixen, M., Hatipoglu, F., Sumer, B. M. & Fredsoe, J. 2008 Wave boundary layer over a stone-covered bed. Coast. Engng 55, 120.Google Scholar
Fornarelli, F. & Vittori, G. 2009 Oscillatory boundary layer close to a rough wall. Eur. J. Mech. (B/Fluids) 28, 283295.CrossRefGoogle Scholar
Ghodke, C., Skitka, J. & Apte, S. V. 2014 Characterizaton of oscillatory boundary layer over a closely packed bed of sediment particles. J. Comput. Multiphase Flows 6, 447456.CrossRefGoogle Scholar
Huang, J. & Greengard, L. 1999 A fast direct solver for elliptic partial differential equations on adaptively refined meshes. SIAM J. Sci. Comput. 21 (4), 15511566.Google Scholar
Jensen, B. L., Sumer, B. M. & Fredsoe, J. 1989 Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech. 206, 265297.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6794.Google Scholar
Jimenéz, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.CrossRefGoogle Scholar
Keiller, D. C. & Sleath, J. F. A. 1976 Velocity measurements close to a rough plate oscillating in its own plane. J. Fluid Mech. 73, 673691.Google Scholar
Mazzuoli, M., Vittori, G. & Blondeaux, P. 2011 Turbulent spots in oscillatory boundary layers. J. Fluid Mech. 685, 365376.Google Scholar
Ozdemir, C. E., Hsu, T. & Balachandar, S. 2014 Direct numerical simulations of transition and turbulence in smooth-walled Stokes boundary layer. Phys. Fluids 26 (4), 045108.CrossRefGoogle Scholar
Ricker, P. M. 2008 A direct multigrid Poisson solver for oct-tree adaptive meshes. Astrophys. J. Suppl. 176 (1), 293300.CrossRefGoogle Scholar
Rosenthal, G. N. & Sleath, J. F. A. 1986 Measurements of lift in oscillatory flow. J. Fluid Mech. 164, 449467.Google Scholar
Saffman, P. G. 1970 A model for inhomogeneous turbulent flows. Proc. R. Soc. Lond. A 317, 417433.Google Scholar
Saffman, P. G. & Wilcox, P. C. 1974 Turbulence models predictions for turbulent boundary layers. AIAA J. 12, 541546.Google Scholar
Sleath, J. F. A. 1987 Turbulent oscillatory flow over rough beds. J. Fluid Mech. 182, 369409.Google Scholar
Thomas, C., Blennerhassett, P. J., Bassom, A. P. & Davies, C. 2015 The linear stability of a Stokes layer subjected to high-frequency perturbations. J. Fluid Mech. 764, 193218.CrossRefGoogle Scholar
Uhlmann, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209, 448476.Google Scholar
Vanella, M., Rabenold, P. & Balaras, E. 2010 A direct-forcing embedded-boundary method with adaptive mesh refinement for fluid–structure interaction problems. J. Comput. Phys. 229, 64276449.Google Scholar
Vittori, G. & Verzicco, R. 1998 Direct simulation of transition in an oscillatory boundary layer. J. Fluid Mech. 371, 207232.CrossRefGoogle Scholar
Zhou, Z., Wang, Z. & Fan, J. 2010 Direct numerical simulation of the transitional boundary-layer flow induced by an isolated hemispherical roughness element. Comput. Meth. Appl. Mech. Engng 199, 15731582.CrossRefGoogle Scholar

Mazzuoli et al. supplementary movie

Isosurfaces of λ2 (λ2=-0.11). Rδ =500. Configuration B (D=2.32)

Download Mazzuoli et al. supplementary movie(Video)
Video 36.7 MB

Mazzuoli et al. supplementary movie

Isosurfaces of λ2 (λ2=-0.11). Rδ =500. Configuration B (D=2.32)

Download Mazzuoli et al. supplementary movie(Video)
Video 10.3 MB